Prudent use of antimicrobials in farm animal production
Nola Leonard
School of Veterinary Medicine, UCD, Dublin, Ireland

Outline
• Set the scene
 – The problem of antimicrobial resistance
• Control
 – Drivers of resistance and usage
 – Education versus Legislation
 – Implementation of controls – what do you think?

Introduction
What is antimicrobial resistance?
Why do we care?

Treatment failure – MRSA, MRSP, MDR E. coli, Swine dysentery

Public health concerns
 e.g. ESBL producing E. coli and Salmonella in poultry

SOME FIGURES

Figure 1A
e Frequency distribution of Salmonella spp. from Salmonella spp. isolates completely susceptible or resistant to one or more antimicrobials in EU reporting laboratories (1st data, 2012)

Summary

EU monitoring
• Documents high levels of resistance to ‘older’ antimicrobials
• Resistance to newer antimicrobials, including critically important antimicrobials is low but emerging in intensively-reared species
• Therapeutic failure in animals

Drivers of resistance

All antimicrobial use, including prudent use, selects for resistance

Other aspects
• Selection of resistance at low antimicrobial concentrations
• Oral antimicrobial use in animals
• Environmental pollution with AM residues and AMR organisms

Antibiotic sales

Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 - Third ESVAC report

Sales of oral formulations

Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 - Third ESVAC report

Probability of resistance in E. coli isolates from high and low antimicrobial-use farms

Some antimicrobials can induce changes in bacterial and phage communities. Integrase-encoding genes increased in faecal phages from medicated pigs.

Extremely low concentrations of antimicrobials (in environment or body) can enrich and maintain existing mutants and select for new mutants.

Other Influences on antimicrobial prescribing - veterinarians:
- Susceptibility test results
- Own experience
- Risk of AMR
- Ease of administration
- Mechanism of activity of drug
- Drug distribution in body

Summary – drivers of resistance
- Clinical usage – appropriate and inappropriate
- Pressures on vets
- Collateral effects of clinical usage on commensals
- Low doses of antimicrobials
- Environmental ‘pollution’ with AMs and AMR genetic elements?

What can we do?
- Develop new antimicrobials
- Develop novel therapies
What can we do? Educate or Legislate?

Use of growth promoters banned – DANMAP data

Use of Avoparcin banned – DANMAP data

But VRE in humans has increased in recent years

Use of critically important antimicrobials – DANMAP data

Ban the use of certain antimicrobials

Denmark:
- 2002 – regulations to restrict the use of fluoroquinolones - use in animals down by 85% by 2005
- 2010 - voluntary programme discontinuing the use of cephalosporin for a two-year period in pigs - cephalosporin consumption 50% reduced from 2009 to 2010.
Legislate

- Ban vets from selling antimicrobials for profit - decoupling
- Ban medicated feed
- Ban prophylactic and metaphylactic use
- Set targets
- Ban the use of critically important antimicrobials in animals
- Prohibit derogations from product authorisations
- Surveillance

Educate

- Veterinarians
- Farmers
- Health professionals
- Industry
- Community
- Improve infection control and management
- Better use of data, diagnostics
- Optimize prescribing practice

Education of farmers

US study
- 86% not concerned that overuse in animals could lead to resistance in farm workers
- Barriers to correct use of antibiotics were lack of time and limited finances
 Friedman et al., 2007. Zoonoses and Public Health, 54, 366-375

Education of farmers

- Communication issues, especially research findings
- Economic feasibility
- Practical considerations

 Alarcon, P., et al., PREVET (2013), http://dx.doi.org/10.1016/j.prevetmed.2013.08.004

Does education work?

Review of studies on prescribing practice in human medicine:
- Printed materials
- Audit and feedback
- Interactive meetings
- Delayed prescriptions
- Multi-faceted interventions
- 1 in 4 studies showed sustained reductions in use

Arnold and Strauss, 2005. Cochrane database of systematic reviews, issue 4

Does education work?

Use of technology
- Clinical decision support systems
- 5 of 7 studies – marginal to moderate effects in improving prescribing behaviour
- Smartphone apps – good uptake by junior doctors
- 71% - improved knowledge of antibiotic use
- Charani et al., 2013
Tackling the problem of antimicrobial resistance –
Which is more effective, education or legislation?
How do we prioritize?