Sustainability of the chicken supply chain in Lebanon: An evaluation system

Rodrigue EL BALAA and Christine TANNOURY
Email: rodrigue.elbalaa@balamand.edu.lb

EAAP 2014 Copenhagen, Denmark, 25-29 August 2014
65th annual meeting of the European Federation of Animal Science
• **Status of Lebanese chicken industry**

 - Enough production to satisfy private consumption and export frozen product around the Middle East

 - 200 farms for table eggs and 1000 farms for broilers, producing seven million eggs and 180 million broilers per year respectively (Freiji, 2008)

• **Difficulties**

 - High production cost

 - Volatile feed cost

 - High solid waste, water depletion, GHG production (IFC, 2007)
• **Proposed approach**

 - A multifaceted problem requires a multidisciplinary approach
 - Horizontally (environmental, economic and social), **sustainability**
 - Vertically to include the supply chain actors (farmers, processors and distributors) **supply chain**

• **Objectives**

 - Setting up an evaluation system of the **sustainability** of the chicken production **supply chain**
 - Validation through testing
Building the evaluation system:
a Life Cycle Analysis Approach

- **Step 1**: Defining the study objective and borders
- **Step 2**: Performing input and output inventory
- **Step 3**: Identifying and calculating sustainability indicators
- **Step 4**: Validating the system through sample testing
- **Step 5**: Transforming indicators results into scores
Building the evaluation system: a Life Cycle Analysis Approach

1. Step 1: Defining the study objective and borders
2. Step 2: Performing input and output inventory
3. Step 3: Identifying and calculating sustainability indicators
4. Step 4: Validating the system through sample testing
5. Step 5: Transforming indicators results into scores
1. Introduction

2. Materials and Method

3. Results

4. Discussion

5. Conclusion

Step 1 • Defining the study objective and borders

Supply chain actors:
• Producers
• Processors
• Distributors

Functional Unit
(Kg of edible meat)
Building the evaluation system: a Life Cycle Analysis Approach

1. Defining the study objective and borders
2. Performing input and output inventory
3. Identifying and calculating sustainability indicators
4. Validating the system through sample testing
5. Transforming indicators results into scores
2. Materials and Method

Step 2
- Performing input and output inventory

<table>
<thead>
<tr>
<th>Level</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
</table>
| **Production** | • Feed
• Water
• Energy
• Medicine
• Bedding
• Equipment | • Air emissions
• Wastewater
• Manure
• fallen stock
• Waste
• Birds |
| **Processing** | • Water
• Energy
• Chemicals
• Raw material (birds)
• Equipment | • Air emissions
• Wastewater
• Animal products
• Solid waste |
| **Distribution** | • Water
• Energy
• Chemicals
• Equipment | • Air emissions
• Wastewater
• Solid waste |
Building the evaluation system: a Life Cycle Analysis Approach

- **Step 1**: Defining the study objective and borders
- **Step 2**: Performing input and output inventory
- **Step 3**: Identifying and calculating sustainability indicators
- **Step 4**: Validating the system through sample testing
- **Step 5**: Transforming indicators results into scores
Identifying and calculating sustainability indicators

<table>
<thead>
<tr>
<th>Variables</th>
<th>Measuring Unit</th>
<th>Supply Chain level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Energy</td>
<td>MJ/kg</td>
<td>Production: Electricity, Transportation; Processing: Electricity, Transportation; Distribution: Electricity</td>
</tr>
<tr>
<td>2) GHG emission</td>
<td>g CO₂/kg</td>
<td>Production: Electricity, Transportation; Animal activity, Transportation; Processing: Electricity, Transportation; Boilers; Distribution: Electricity</td>
</tr>
<tr>
<td>3) Nitrogenous effluents</td>
<td>L/kg</td>
<td>Production: Animal drinking, Cleaning, Cooling; Processing: Cleaning, Cooling, Cooking; Distribution: NA</td>
</tr>
<tr>
<td>4) Water consumption</td>
<td>g/kg</td>
<td>Production: Manure, Dead birds; Processing: Wastewater treatment, Offal and viscera; Distribution: NA</td>
</tr>
<tr>
<td>5) Packaging material</td>
<td>g/kg</td>
<td>Production: Feed packs; Processing: Cartons and nylon; Distribution: Nylon bags</td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Equity</td>
<td>% of women</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>7) Salary</td>
<td>LBP/year</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>8) Employees turn-over or rotation rate</td>
<td>Average of working years</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>9) Training</td>
<td>Number of trainings per year</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>10) Age</td>
<td>Mean age of workers</td>
<td></td>
</tr>
<tr>
<td>11) Working environment security</td>
<td>% of injuries</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>Economic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12) Productivity</td>
<td>Kg/HWU</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>13) Profit growth</td>
<td>%</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>14) Yearly investment</td>
<td>%</td>
<td>Applied at all levels</td>
</tr>
<tr>
<td>15) Added value</td>
<td>%</td>
<td>Applied at all levels</td>
</tr>
</tbody>
</table>
Building the evaluation system: a Life Cycle Analysis Approach

Step 1 • Defining the study objective and borders
Step 2 • Performing input and output inventory
Step 3 • Identifying and calculating sustainability indicators
Step 4 • Validating the system through sample testing
Step 5 • Transforming indicators results into scores
Questionnaire (40 questions), four sections:

1. **General information** (name, the date of opening, the number of employees, etc.)
2. **Environmental issues** (energy consumption for production and transportation, water consumption, chemical detergents, organic effluents etc.
3. **Social conditions** (salary for blue and white collars, rotation rate, average age of workers, etc.
4. **Economical data** (productivity, added value, profit growth, internal investment, etc.)

Sample interviewees
- Two major producers with large market segments
- two processors
- five distributors.
Building the evaluation system: a Life Cycle Analysis Approach

Step 1 • Defining the study objective and borders

Step 2 • Performing input and output inventory

Step 3 • Identifying and calculating sustainability indicators

Step 4 • Validating the system through sample testing

Step 5 • Transforming indicators results into scores
1. Introduction

2. Materials and Method

3. Results

4. Discussion

5. Conclusion

Step 5

- Transforming indicators results into scores

Score ranging between 0 and 10

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Acronyms</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MJ/Kg)</td>
<td>ENV-ENG</td>
<td>x≥250</td>
<td>250>x≥220</td>
<td>220>x≥200</td>
<td>200>x≥150</td>
<td>150>x≥100</td>
<td>100>x≥80</td>
<td>80>x≥60</td>
<td>60>x≥20</td>
<td>20>x≥10</td>
<td>10>x≥5</td>
<td>5>x</td>
</tr>
<tr>
<td>Green House Gases (g/kg)</td>
<td>ENV-GHG</td>
<td>x≥290</td>
<td>290>x≥260</td>
<td>260>x≥200</td>
<td>200>x≥100</td>
<td>100>x≥50</td>
<td>50>x≥25</td>
<td>25>x≥20</td>
<td>20>x≥15</td>
<td>15>x≥10</td>
<td>10>x≥5</td>
<td>5>x</td>
</tr>
<tr>
<td>Effluents (g/Kg)</td>
<td>ENV-N</td>
<td>x≥30</td>
<td>30>x≥25</td>
<td>25>x≥20</td>
<td>20>x≥15</td>
<td>10>x≥5</td>
<td>5>x≥2.5</td>
<td>2.5>x≥2</td>
<td>2>x≥1.5</td>
<td>1.5>x≥1</td>
<td>1>x≥0.5</td>
<td>0.5>x</td>
</tr>
<tr>
<td>Water (L/Kg)</td>
<td>ENV-WAT</td>
<td>x≥20</td>
<td>20>x≥15</td>
<td>15>x≥10</td>
<td>10>x≥8</td>
<td>8>x≥6</td>
<td>6>x≥4</td>
<td>4>x≥2</td>
<td>2>x≥1.5</td>
<td>1.5>x≥1</td>
<td>1>x≥0.5</td>
<td>0.5>x</td>
</tr>
<tr>
<td>Packaging (kg/kg)</td>
<td>ENV-PACK</td>
<td>x≥5</td>
<td>5>x≥4.5</td>
<td>4.5>x≥4</td>
<td>4>x≥3.5</td>
<td>3.5>x≥3</td>
<td>3>x≥2.5</td>
<td>2.5>x≥2</td>
<td>2>x≥1.5</td>
<td>1.5>x≥1</td>
<td>1>x≥0.5</td>
<td>0.5>x</td>
</tr>
<tr>
<td>Equity (%)</td>
<td>SOC-EQU</td>
<td>0 ≤ x ≤ 10</td>
<td>10 ≤ x ≤ 15</td>
<td>15 ≤ x ≤ 20</td>
<td>20 ≤ x ≤ 25</td>
<td>25 ≤ x ≤ 30</td>
<td>30 ≤ x ≤ 32.5</td>
<td>32.5 ≤ x ≤ 37.5</td>
<td>37.5 ≤ x ≤ 40</td>
<td>40 ≤ x ≤ 45</td>
<td>45 ≤ x ≤ 50</td>
<td>50 ≤ x > 50</td>
</tr>
<tr>
<td>Salary (000 LBP/year)</td>
<td>SOC-SAL</td>
<td>x<750</td>
<td>750≤x<950</td>
<td>950≤x<1050</td>
<td>1050≤x<1100</td>
<td>1100≤x<1150</td>
<td>1150≤x<1200</td>
<td>1200≤x<1500</td>
<td>1500≤x<1700</td>
<td>1700≤x<1750</td>
<td>1700≤x<1750</td>
<td>1700≤x<1750</td>
</tr>
<tr>
<td>Rotation Rate (%) ≥25</td>
<td>SOC-SAL</td>
<td>x<950</td>
<td>950≤x<1050</td>
<td>1050≤x<1150</td>
<td>1150≤x<1200</td>
<td>1200≤x<1500</td>
<td>1500≤x<1700</td>
<td>1700≤x<1750</td>
<td>1700≤x<1750</td>
<td>1900≤x<2000</td>
<td>x≥2000</td>
<td></td>
</tr>
<tr>
<td>Age % 30<40</td>
<td>SOC-AGE</td>
<td><5%</td>
<td>5 ≤ x < 10</td>
<td>10 ≤ x < 20</td>
<td>20 ≤ x < 30</td>
<td>30 ≤ x < 40</td>
<td>40 ≤ x < 50</td>
<td>50 ≤ x < 60</td>
<td>60 ≤ x ≤ 70</td>
<td>70 ≤ x < 80</td>
<td>80 ≤ x < 90</td>
<td>x ≥ 90</td>
</tr>
<tr>
<td>Training (days/year)</td>
<td>SOC-TRAIN</td>
<td>x<1</td>
<td>1≤x<3</td>
<td>3≤x<5</td>
<td>5≤x<8</td>
<td>8≤x<10</td>
<td>10≤x<12</td>
<td>12≤x<15</td>
<td>15≤x<18</td>
<td>18≤x<20</td>
<td>20≤x<25</td>
<td>x≥25</td>
</tr>
<tr>
<td>Injuries</td>
<td>SOC-INJ</td>
<td>x≥100</td>
<td>100≤x<200</td>
<td>200≤x<260</td>
<td>260≤x<400</td>
<td>400≤x<1000</td>
<td>1000≤x<1500</td>
<td>1500≤x<2000</td>
<td>2000≤x<2500</td>
<td>2500≤x<3000</td>
<td>3000≤x<3500</td>
<td>x≥3500</td>
</tr>
<tr>
<td>Productivity (T/WFU)</td>
<td>SOC-PROD</td>
<td>x<1</td>
<td>1≤x<10</td>
<td>10≤x<15</td>
<td>15≤x<20</td>
<td>20≤x<50</td>
<td>50≤x<750</td>
<td>750≤x<2500</td>
<td>2500≤x<5000</td>
<td>5000≤x<10000</td>
<td>x≥10000</td>
<td></td>
</tr>
<tr>
<td>Profit Growth (%)</td>
<td>SOC-PG</td>
<td>x<0.25</td>
<td>0.25≤x<0.5</td>
<td>0.5≤x<1</td>
<td>1≤x<3</td>
<td>3≤x<4.5</td>
<td>4.5≤x<6</td>
<td>6≤x<7.5</td>
<td>7.5≤x<9</td>
<td>9≤x<10.5</td>
<td>10.5≤x<15</td>
<td>x≥15</td>
</tr>
<tr>
<td>Investment (%)</td>
<td>SOC-INV</td>
<td>x<0.25</td>
<td>0.25≤x<1</td>
<td>1≤x<1.5</td>
<td>1.5≤x<2</td>
<td>2.5≤x<3</td>
<td>3≤x<3.5</td>
<td>3.5≤x<4</td>
<td>4≤x<4.5</td>
<td>4.5≤x<5</td>
<td>x≥5</td>
<td></td>
</tr>
<tr>
<td>Added Value</td>
<td>SOC-AV</td>
<td>x<200</td>
<td>200≤x<400</td>
<td>400≤x<600</td>
<td>600≤x<800</td>
<td>800≤x<1000</td>
<td>1000≤x<1500</td>
<td>1500≤x<2000</td>
<td>2000≤x<2500</td>
<td>2500≤x<3000</td>
<td>3000≤x<3500</td>
<td>x≥3500</td>
</tr>
</tbody>
</table>

Acceptability Benchmark
1. Unit sustainability performance scoring

Sustainability performance evaluation of processor 2
2. Supply chain level group performance
3. Typology according to sustainability performances

- High economic performance
- High water and nitrogenous effluent performances
- High profit growth
- High \(N \) effluents score
The system was able to:

1. Group supply chain actors into categories solely based on their sustainability performance

2. Quantify sustainability levels and provide scores

3. Offer a static description and a dynamic follow up of the supply chain’s sustainability level

4. Offer a holistic approach and reveals the interaction between the different supply chain actors

5. Track sustainability weak sustainability scores to their origin
Use of the evaluation system

- Gathering and quantifying sustainability scores to help take agricultural policy decisions
- Transfer of results by specialised agricultural technicians to stakeholders in a simplified manner
- A fine balance between the accuracy of the information and the simplicity of its presentation

Perspectives

- Test the system on a broader scale to allow fine tuning the scores calculations
- Test the adaptability of the system by testing it in different countries with different production systems and weather conditions
- Automating the calculation system through adapted computer programs
Questions ?