Rearing protocol during the first three weeks of life effects histology of pancreatic beta cells in male calves

Luise Prokop¹
Ralph Lucius², Hans-Jürgen Kunz³, Martin Kaske⁴, Steffi Wiedemann¹

¹ Animal Health, Institute of Animal Breeding and Husbandry, CAU Kiel, Germany
² Institute of Anatomy, CAU Kiel, Germany
³ Chamber of Agriculture of Schleswig-Holstein, Germany
⁴ Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Switzerland

EAAP 2014
Copenhagen, 28.08.2014
Outline

1. Ad libitum feeding and pancreatic tissue
2. Material and Methods
3. Results
4. Discussion
1. Ad libitum feeding

Conventional feeding

- 10 % of BW of milk/milk replacer per day → 4-6 L/day

Ad libitum feeding

- at least 20 % of BW of milk/milk replacer per day → 10-12 L/day
- advantages:
 - higher weight gain (Khan et al., 2007)
 - lower morbidity and mortality rates (Godden et al., 2005)
 - positive influence on behaviour (von Keyserlingk et al., 2007)
 - higher milk yield during the first lactation (up to 1.250 kg) (summarized in Kaske, 2009)
1. Insulin and pancreas

Insulin

- key hormone in the maintenance of glucose homeostasis
- impaired metabolism in dairy cows (massive glucose drain towards the udder)
- produced in the β-cells of the pancreas
- blood concentration differs during ad libitum and restrictive feeding (Maccari et al., 2014)
- in rats: perinatal nutritional stimuli permanently change the morphology of the pancreas (Holness et al., 2000)

Aim of the study

→ To determine long-term effects of early postnatal rearing conditions of calves on morphology of insulin producing pancreatic β-cells
2. Material and Methods

- male calves of Holstein Friesian breed were reared either intensively or according to a standard protocol in the first 3 weeks of life

Intensively reared calves (INT; n=21)

- Day 1: individual hutches
- Milk ad libitum
- Day 24: group pen
- 6 L MR

Conventionally reared calves (CON; n=21)

- Day 1: individual hutches
- 4 L milk
- Day 8: group pen
- 6 L MR

- Weaning: day 29 – 70 of life
2. Material and Methods

• data collection:
 – intake of milk/MR and calf starter
 – body weight (birth, weekly up to wk 10 of life, slaughter)

• slaughtering at an age of 9 months

• pancreatic tissue was removed and examined by histological and immunohistochemical techniques:
 – hematoxylin eosin stain
 – antibody (insulin) staining
2. Material and Methods

• **Number of islets of Langerhans**
 - pictures of immunostained preparations ("Axiophot", Zeiss)
 - 6 – 18 pictures of each calf (depending on cross-section size of preparation)
 - number of Islets of Langerhans was counted

• **Area of β-cells**
 - pictures of immunostained preparations ("Eclipse E600", Nikon)
 - 5 pictures each of 18 calves (INT n=9; CON n=9)
 - brown stained areas were marked red and area was calculated (NIS-Elements Basic Research 3.2, Nikon)

• **Statistical analyses**: SAS Version 9.3 → GLM an MIXED procedure
3. Results

Feed intake
- higher milk consumption during the first three weeks of life in intensively reared calves (INT: 196 kg, CON: 102 kg; P<0.001)
- no difference in calf starter intake (INT: 0.94 kg, CON: 0.84 kg; P=0.28)

Body weight
- birth weights were similar (43.9 ± 1.5 kg vs. 44.1 ± 1.5 kg, P = 1.0)
- weekly body weights higher in calves reared intensively (P < 0.001)
- body weight at slaughter did not differ significantly (319 ± 5 kg vs. 309 ± 5 kg, P = 0.18)
3. Results

Blood glucose and insulin concentration

- Differences in the serum glucose and plasma insulin concentration during the time of different feeding
3. Results

Number of islets of Langerhans and area of β-cells

- significant higher numbers of Islets of Langerhans in calves reared intensively
 - 9.1 ± 0.3 vs. 7.8 ± 0.3 islets ($P = 0.002$)

- no significant differences in the area of β-cells between both treatment groups
 - $102,799 \pm 8,193 \, \mu m^2$ vs. $85,699 \pm 8,193 \, \mu m^2$ ($P = 0.14$)

Immunhistochemical presentation of the Islets of Langerhans
4. Discussion

Feed intake

• intensively reared calves:
 ✓ higher nutrient intake during the first three weeks of life
 ✓ higher body weight gain during the first 10 weeks of life
 ✓ differences in body weight at slaughter were not as great as expected (later lung diseases?)
 ✓ higher blood glucose and insulin concentration after three weeks of life
4. Discussion

Number of islets of Langerhans and Area of β-cells

- neonatal period: replication and regeneration of β-cells is high; number and size of newly formed islets are influenced by nutritional stimuli
 - control mechanisms are not fully understood
 - maybe important: Insulin-like growth factors (IGFs)

- no differences in the area of β-cells
 - limited number of animals
 - no standardized method

- altered histology of pancreatic β-cells \rightarrow Metabolic programming
 - The organism is able to modulate „biological switches“ to adapt itself to altered environments during early periods in life.
Thank you for your attention!