Generating test-day methane emissions as a basis for genetic studies with random regressions

T. Yin¹², H. Frevert¹, T. Pinent¹, K. Brügemann¹, H. Simianer² and S. König¹

¹Department of Animal Breeding, University of Kassel, Witzenhausen
²Department of Animal Breeding and Genetics, University of Göttingen, Göttingen
Background

- Greenhaus gas (GHG) emissions
 - CO₂, N₂O, and CH₄
 - global climate change
 - inefficient use of dietary energy

- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane emissions (ME)

- Methods to measure ME
 - respiration chamber
 - sulfur hexafluoride tracer
 - mobile laser methane detector
Background

• Greenhouse gas (GHG) emissions
 – CO₂, N₂O, and CH₄
 – global climate change
 – inefficient use of dietary energy

• The dairy cattle sector (FAO, 2010)
 – 4% of GHG emissions
 – 52% contribution of methane emissions

• Methods to measure ME
 – respiration chamber
 – sulfur hexafluoride tracer
 – mobile laser methane detector
Background

- Greenhouse gas (GHG) emissions
 - CO_2, N_2O, and CH_4
 - global climate change
 - inefficient use of dietary energy

- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane emissions (ME)

- Methods to measure ME
 - respiration chamber
 - sulfur hexafluoride tracer
 - mobile laser methane detector
Background

• Greenhaus gas (GHG) emissions
 – CO$_2$, N$_2$O, and CH$_4$
 – global climate change
 – inefficient use of dietary energy

• The dairy cattle sector (FAO, 2010)
 – 4% of GHG emissions
 – 52% contribution of methane emissions

• Methods to measure ME
 – respiration chamber
 – sulfur hexafluoride tracer
 – mobile laser methane detector
Aims of this study

- simulate and predict test-day ME using indicator traits
- estimate heritabilities for ME by DIM
- genetic correlations: test-day ME and test-day production traits by DIM
- genetic correlations: test-day ME and fertility traits by DIM
- genetic correlations: test-day ME and clinical mastitis by DIM
- evaluate breeding program designs
 - progeny testing program
 - genomic breeding programs

1. Simulation and prediction of test-day ME
Data

• Real data
 – 7804 test-day records
 – 916 first lactation Brown Swiss cows
 – 41 low input farms in mountainous regions in Switzerland

• Test-day production traits
 – Milk yield (MY), fat percentage (Fat%), protein percentage (Pro%), milk urea nitrogen (MUN)

• Conformation traits
 – Wither height (WH), hip width (HW), body condition score (BCS)

• Fertility traits
 – Calving interval (CI), days open (DO), stillbirth (SB)

• Health trait: clinical mastitis (CM)
Predict methane emissions - equation 1

\[MEI = (10.0 + 4.9 \times \text{MY} + 1.5 \times \text{BW}^{0.75}) \times 0.0132 \]

(Kirchgeßner et al., 1995)

Test-day MY

\[BW = 439 + 0.2 \times \text{DIM} + 4.2 \times \text{HH} + 29.2 \times \text{HW} + 0.3 \times \text{HW}^2 + 33.5 \times \text{BCS} \]

(Enevoldsen et al., 1997)
Predict methane emissions - equation 2

\[ME2 = \frac{F_1 \times 18.4}{0.005565 \times 0.006} \times [1 + (2.38 - L_1) \times 0.04] \]

(de Haas et al., 2011)
Predict methane emissions - equation 2

\[ME2 = \text{FI} \times 18.4 / 0.005565 \times 0.006 \times \left[1 + \left(2.38 - \text{LI} \right) \times 0.04 \right] \]

\[
\begin{align*}
\text{FI} &= 15.28 + 0.008 \times (\text{BW} - 603) \\
&+ 0.2389 \times (\text{ECM} - 20) - 0.005874 \times (\text{ECM} - 20)^2 \\
&+ 0.305 \times (\text{Con} - 2.88) \\
&+ 0.959 \times (\text{ECR} - 5.41) \\
&- 0.0028 \times (\text{DIM} - 112) + 1.142 \times (\ln(\text{DIM}) - 4.33) \\
&+ 0.0443 \times (\text{Mon} - 6.36) - 0.019776 \times (\text{Mon} - 6.36)^2
\end{align*}
\]

(Schwarz and Gruber, 1999)

(de Haas et al., 2011)
Predict methane emissions - equation 2

\[
ME2 = \frac{FI \times 18.4}{0.005565 \times 0.006 \times [1 + (2.38 - LI) \times 0.04]}
\]

\[
FI = 15.28 + 0.008 \times (BW - 603)
+ 0.2389 \times (ECM - 20) - 0.005874 \times (ECM - 20)^2
+ 0.305 \times (Con - 2.88)
+ 0.959 \times (ECR - 5.41)
- 0.0028 \times (DIM - 112) + 1.142 \times (\ln(DIM) - 4.33)
+ 0.0443 \times (Mon - 6.36) - 0.019776 \times (Mon - 6.36)^2
\]

Milk urea nitrogen (in mg/dl)

<table>
<thead>
<tr>
<th>Protein %</th>
<th>< 25.14</th>
<th>> 25.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3.418</td>
<td>No concentrate 4.5 MJ NEL/kg DM</td>
<td>No concentrate 6 MJ NEL/kg DM</td>
</tr>
<tr>
<td>> 3.418</td>
<td>10% concentrate (N(1.78, 0.41)) 4.5 MJ NEL/kg DM</td>
<td>10% concentrate (N(1.78, 0.41)) 6 MJ NEL/kg DM</td>
</tr>
</tbody>
</table>

(Schwarz and Gruber, 1999)

(De Haas et al., 2011)
Predict methane emissions - equation 2

\[ME2 = \frac{FI \times 18.4}{0.00565 \times 0.006 \times [1 + (2.38 - LI) \times 0.04]} \]

\[FI = 15.28 + 0.008 \times (BW - 603) + 0.2389 \times (ECM - 20) - 0.005874 \times (ECM - 20)^2 + 0.305 \times (Con - 2.88) + 0.959 \times (ECR - 5.41) - 0.0028 \times (DIM - 112) + 1.142 \times \ln(DIM) - 4.33 \]

\[+ 0.0443 \times (Mon - 6.36) - 0.019776 \times (Mon - 6.36)^2 \]

Level of intake: can be calculated based on FI and BW

<table>
<thead>
<tr>
<th>Protein %</th>
<th>Milk urea nitrogen (in mg/dl)</th>
<th>< 25.14</th>
<th>> 25.14</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3.418</td>
<td>No concentrate</td>
<td>4.5 MJ NEL/kg DM</td>
<td>No concentrate</td>
</tr>
<tr>
<td>> 3.418</td>
<td>10% concentrate ~ N(1.78, 0.41)</td>
<td>4.5 MJ NEL/kg DM</td>
<td>6 MJ NEL/kg DM</td>
</tr>
</tbody>
</table>

(de Haas et al., 2011)
Predicted ME1 (in Mcal) and ME2 (in g)

- Phenotypic correlation between ME1 and ME2: 0.63
2. Heritabilities for test-day ME

http://www.brownswiss.org/thebrownswissbreed.html
Bivariate random regression models
DMU package (Madsen and Jensen, 2012)

\[y = Xb + Qu + Zp + e \]

- **Fixed effects**
 - Farm
 - Test-year-season
 - Fixed regression with Legendre polynomials 3 (LP 3)

- **Time dependent covariate**
 - DIM 1-305

- **LP 2 for additive genetic and permanent environment effects**

Fixed effects

PE

Vector of the test-day methane ME1 and ME2

Ad
Daily heritabilities for methane emissions

![Graph showing heritability over days in milk for ME1 and ME2 with peak heritability at around 200 days for ME1 and 150 days for ME2.](image-url)
3. Genetic correlations:

• test-day ME and test-day production traits
Genetic correlations

Days in milk

Genetic correlation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ME2-MY

ME1-MUN

ME2-MUN
4. Genetic correlations:

- test-day ME and fertility traits
- test-day ME and clinical mastitis

http://www.brownswiss.org/thebrownswissbred.html
http://lankavet.blogspot.dk/2013/01/mastitis-in-cows.html
Bivariate random regression and single trait models

(***DMU package***)

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} = \begin{bmatrix}
 X_1 b_1 + Z_1 a_1 + W_p + e_1 \\
 X_2 b_2 + Z_2 a_2 + Q_s + e_2
\end{bmatrix}
\]

- **Dependent variables**
 - \(y_1\): test-day ME1 or ME2
 - \(y_2\): fertility traits or clinical mastitis

- **Fixed effects**
 - \(b_1\): farm, test-year-season, LP 3
 - \(b_2\): farm, calving-year-season, sex of the calf for SB

- **Random effects**
 - \(a_1\): additive genetic effect with LP 2
 - \(p\): permanent environment effect with LP 2
 - \(a_2\): additive genetic effect
 - \(s\): service sire effect for CI and SB
Genetic correlations

Days in milk

Genetic correlation

-0.2
0
0.2
0.4
0.6
0.8
1

0 50 100 150 200 250 300

ME1-DO
ME2-DO
ME1-CI
ME2-CI
5. Breeding program

- progeny testing
- genomic breeding programs
Evaluation of breeding programs
ZPLAN+ (Täubert et al., 2010)

Economic weight for milk yield was five times higher than for other traits

Progeny testing and genomic breeding program with different accuracy
Conclusions

• Methane emissions can be predicted when combining real data with deterministic equations and stochastic simulations
• Moderateheritabilities for methane emissions
• Genetic correlation between methane emissions and
 – milk yield: antagonistic
 – fertility traits: positive
• Genomic breeding program is better
 – response to selection
 – discounted return per animal
Conclusions

- Methane emissions can be predicted when combining real data with deterministic equations and stochastic simulations
- Moderate heritabilities for methane emissions
- Genetic correlation between methane emissions and
 - milk yield: antagonistic
 - fertility traits: positive
- Genomic breeding program is better
 - response to selection
 - discounted return per animal

Thank you for your attention!
Characteristics of breeding programs

<table>
<thead>
<tr>
<th></th>
<th>Progeny testing</th>
<th>Genomic selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milking cow</td>
<td>25’000</td>
<td>25’000</td>
</tr>
<tr>
<td>Bull dam</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Bull calves</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Test bull</td>
<td>50</td>
<td>--</td>
</tr>
<tr>
<td>Proven bull</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Elite bull</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bull sire</td>
<td>80% proven bull</td>
<td>97% proven bull</td>
</tr>
<tr>
<td></td>
<td>20% elite bull</td>
<td>3% elite bull</td>
</tr>
<tr>
<td>Cow sire</td>
<td>40% test bull</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>50% proven bull</td>
<td>67% proven bull</td>
</tr>
<tr>
<td></td>
<td>10% elite bull</td>
<td>33% elite bull</td>
</tr>
</tbody>
</table>
Heritabilities and correlations among the traits

<table>
<thead>
<tr>
<th>Trait</th>
<th>ME</th>
<th>MY</th>
<th>DO</th>
<th>CM</th>
<th>BCS</th>
<th>MT</th>
<th>Economic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane emission (ME)</td>
<td>0.44</td>
<td>0.89</td>
<td>0.86</td>
<td>0.03</td>
<td>0.35</td>
<td>x</td>
<td>-6.84</td>
</tr>
<tr>
<td>Milk yield (MY)</td>
<td>0.92</td>
<td>0.34</td>
<td>0.93</td>
<td>0.04</td>
<td>-0.4</td>
<td>0</td>
<td>0.60 / 3.00</td>
</tr>
<tr>
<td>Days open (DO)</td>
<td>0.10</td>
<td>0.12</td>
<td>0.03</td>
<td>-0.18</td>
<td>-0.4</td>
<td>-0.03</td>
<td>-0.10</td>
</tr>
<tr>
<td>Clinical mastitis (CM)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
<td>-0.26</td>
<td>0.19</td>
<td>-1.66</td>
</tr>
<tr>
<td>Body condition score (BCS)</td>
<td>0.25</td>
<td>-0.01</td>
<td>-0.08</td>
<td>-0.01</td>
<td>0.15</td>
<td>x</td>
<td>6.11</td>
</tr>
<tr>
<td>Milking temperament (MT)</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>-0.67</td>
<td>x</td>
<td>0.04</td>
<td>8.01</td>
</tr>
<tr>
<td>Phenotypic SD</td>
<td>0.22</td>
<td>2.88</td>
<td>60.57</td>
<td>1.91</td>
<td>0.42</td>
<td>0.62</td>
<td></td>
</tr>
</tbody>
</table>
Equal economic weight was assumed for the six traits

Response to selection / genetic standard deviation

Accuracies of genomic selection

0.2 | 0.4 | 0.6 | 0.8

Progeny testing

Total discounted return per animal unit

Progeny testing and genomic breeding program with different accuracy
Total genetic gain of a bull per generation

Number of daughters for ME1 (x100) in scenario I / Accuracy in scenarios II and III