Impact of subclinical ketosis and related diseases on greenhouse gases of dairy production

P.F. Mostert, E.A.M. Bokkers, C.E. van Middelaar and I.J.M. de Boer
Animal Production Systems group, Wageningen University, Wageningen, the Netherlands
Introduction

- Subclinical ketosis (SCK) after calving
- SCK increases risk on other diseases
- Impact on milk production, reproduction and culling
- Inefficient production impact on environment

Aim of this study

Assess the impact of subclinical ketosis and related diseases in dairy cows on greenhouse gases per kg milk
Material and Methods

- Development of stochastic, dynamic, simulation model
- Integrated environmental analyses (GHGs)
Dynamics of model

Attributable risk
Additional risk of other diseases included

* Weak relation with SCK
Calculation of greenhouse gases (GHGs)

Production input
- Milk production
- Calving interval
- Culling risk

Greenhouse gases/FPCM
- Feed production, land use change
- Enteric methane
- Manure storage

Diseases

Feed intake
- Diet composition
- Energy requirement

GHGs/kg FPCM

Dairy farm

Feed production

Grass/maize

Manure storage

Enteric methane

Kg CO\textsubscript{2}e/kg FPCM

Other inputs

Concentrates

LULUC

System boundary

CO\textsubscript{2}

CH\textsubscript{4}

N\textsubscript{2}O
Input model

<table>
<thead>
<tr>
<th>Disease</th>
<th>Incidence first 30 days (%)</th>
<th>Odds Ratio SCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCK</td>
<td>29.6</td>
<td></td>
</tr>
<tr>
<td>Clinical ketosis</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Displaced abomasum</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>Metritis</td>
<td>9.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Mastitis</td>
<td>6.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Lameness</td>
<td>3.0</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Healthy cow & cow with SCK preliminary results

- 30 days Lactation
- Kg CO2e/ kg FPCM

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>SCK(+7.3%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed production</td>
<td>.262</td>
<td>.281</td>
</tr>
<tr>
<td>Enteric</td>
<td>.314</td>
<td>.338</td>
</tr>
<tr>
<td>Land use change</td>
<td>.061</td>
<td>.066</td>
</tr>
<tr>
<td>Manure storage</td>
<td>.051</td>
<td>.054</td>
</tr>
</tbody>
</table>

* P < 0.001
System expansion for meat production

Van Middelaar et al, 2014; StatLink, 2015
Healthy cow & cow with SCK

Preliminary results

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>SCK(+7.3%)*</th>
<th>Healthy</th>
<th>SCK(+1.3%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 days</td>
<td>.689</td>
<td>.739</td>
<td>.784</td>
<td>.794</td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P <0.001
Healthy cow & cow with SCK corrected for meat products

preliminary results

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>SCK(+9.4%)*</th>
<th>Healthy</th>
<th>SCK(+1.6%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg CO2e/kg FPCM</td>
<td>.689</td>
<td>.752</td>
<td>.755</td>
<td>.766</td>
</tr>
<tr>
<td>30 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* P <0.001
Impact of SCK+another disease (SD) preliminary results

* P < 0.001
Conclusion

- Impact of SCK of 1.6% whole lactation or 9.4% first 30 days with current input

- Difficult to have an average result of SCK

- Reducing diseases will reduce the environmental impact of dairy production
Questions?

Acknowledgements:

We are grateful to Elanco Animal Health for financial and scientific support

pim.mostert@wur.nl