Development of a Genetic Marker Panel to Predict Reproductive Longevity in Holstein Cattle

Kacper Żukowski1, Nehil Jain1, Jyoti Joshi1, Jeremy E. Koenig1, Robert G. Beiko1 and Hein van der Steen2

1Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
2Performance Genomics Inc., Bible Hill, NS, Canada
Table of contents

- Introduction
- Mouse study
- Cattle study
- Meta-analysis
- SNP panel selection
- Conclusions and further plans
Reproductive Longevity

Reproductive Longevity (RL) is the result of a complex of traits involving longevity, ovarian function, fertility, stress resistance (coping with the stress of lactation and reproduction), robustness and health. It is reasonable to assume that a relatively large number of genes and pathways are involved and that the genetic bottlenecks overlap and differ between mouse and cattle.
Reproductive Longevity

RL is affected by a lot of different traits, some of which are low in heritability...

Fig. The average cattle heritability for Interbull countries across selected traits (official information, 2015).
The aim of the study

- identification of candidate genes associated with RL at different level of mouse and cattle study:
 - low density genome resolution,
 - high density genome resolution,
 - transcriptome,

- commercial DNA marker-based tests of RL for the Holstein cattle industry.
Mouse study

Material

Three studies: microarray, poolseq and rnaseq
Material, Unique mouse resource

Fig. Effect of selection on number of lifetime pregnancies (Don Crober et al., 2007).
Methods and results

- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran-Mantel-Haenszel statistics, following filtration
 after filtration 6.4M of SNPs,
- Gene selection based on modified TopQ method described by Lehne et al., 2011,
 580K highly significant SNPs within 13.4K genes.
- Two additional contrasts: ovary vs. pituitary tissue and reproductive vs.
 non-reproductive females,
Methods and results

- **contrast between select and control lines,**
- **43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,**
- **8 pooled samples, mean coverage 50x per pool,**
- **Poolseq analysis based on Cochran–Mantel–Haenszel statistic,**
- **after filtration 6.4M of SNPs,**
- **gene selection based on modified TopQ method described by Lehne et al., 2011,**
- **580K highly significant SNPs within 13.4K genes,**
- **two additional contrasts: ovary vs. pituitary tissue and reproductive vs. non-reproductive females,**
Whole genome sequencing approaches (Poolseq)

- new method of cost-effectiveness sequencing,

Fig. Comparison of sequencing strategies (Schlötterer et al., 2014).
Whole genome sequencing approaches (Poolseq)

- new method of cost-effectiveness sequencing,
- similar to reduced representation library, strategy used to discover large numbers of genome-wide SNP with high MAF (Matukumalli et. al 2009).

Fig. Comparison of sequencing strategies (Schlötterer et al., 2014).
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),

![Diagram showing Microarray, Poolseq, Rnaseq, and Mouse index relationships]
contrast between select and control lines,
43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
8 pooled samples, mean coverage 50x per pool,
Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
▶ after filtration 6.4M of SNPs,
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,
- gene selection based on modified TopQ method described by Lehne et al., 2011,
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,
- gene selection based on modified TopQ method described by Lehne et al., 2011,
 - 580K highly significant SNPs within 13.4K genes.
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,
- gene selection based on modified TopQ method described by Lehne et al., 2011,
 - 580K highly significant SNPs within 13.4K genes.
- two additional contrasts: ovary vs. pituitary tissue and reproductive vs. non-reproductive females,
Methods and results, continue

- contrast between select and control lines,
- 43k SNPs segregating with MAF > 0.05, LHI and LHGV statistics,
- 8 pooled samples, mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,
- gene selection based on modified TopQ method described by Lehne et al., 2011,
 - 580K highly significant SNPs within 13.4K genes.
- two additional contrasts: ovary vs. pituitary tissue and reproductive vs. non-reproductive females,
- differential expression analysis.
Poolseq supported by individual sequencing study
Methods, Poolseq

- Sequencing → Alignment → SNP calling → SNP filtration → Poolseq analysis → Multiple testing → Gene selection → Pathway analysis

16 pools with high and 16 pools with low longevity bulls,
16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
Methods, Poolseq

16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,
16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
Methods, Poolseq

- Sequencing → Alignment → SNP calling → SNP filtration → Poolseq analysis → Multiple testing → Gene selection → Pathway analysis

16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
- after filtration 10M of SNPs,
16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
- after filtration 10M of SNPs,
- more than 230K new SNPs were identified,
16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
- after filtration 10M of SNPs,
- more than 230K new SNPs were identified,

gene selection based on modified TopQ method described by Lehne et al., 2011,
16 pools with high and 16 pools with low longevity bulls,
- mean coverage 12.5x per pool,
- bulls per pool ranged between 17 and 18,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
- after filtration 10M of SNPs,
- more than 230K new SNPs were identified,

gene selection based on modified TopQ method described by Lehne et al., 2011,
- 200K highly significant SNPs within 8.4K genes.
Fig. Manhattan plot for TopQ (left) with histogram (right-top) and qq (right-bottom) plots for all coding genes.
Results, Meta-analysis

Fig. Venn plot representing significant genes across considered studies based on cattle annotated genes.

- homology issue,
 - 45K for mouse and 24K cattle genes in annotation table,
- more than 3300 significant genes across studies based on cattle annotation table,
- low correlation between studies,
- weighted index used to rank genes,
- more than 1400 significant genes which were useful for cattle,
 - with more than one significant SNP within gene.
SNP panel selection

- SNP selection algorithm based on significance level and linkage disequilibrium,
- testing panel with more than 1400 genes and QTLs (Zhi-Liang et al., 2013),
- testing panel with more than 4500 SNPs,
- SNP classes: within gene, within QTL, intergenomic SNPs.
Conclusions and further plans

Conclusions:
- multidisciplinary approach,
- testing panel in production, Illumina approach.

Further plans:
- many levels of testing: individual SNP, gene, genomic selection approach.
- validation procedure:
 - more than 3000 bulls,
 - stand alone panel,
 - combination with Illumina Bovine50K.
Acknowledgements

Jyoti Joshi, Nehil Jain, Robert Beiko, Hein van der Steen and people from Lab...

Erik Mullaart and Chris Schrooten
Barry Simpson and Stewart Bauck

NRC-IRAP
ACOA
Mitacs Accelerate
Thank you for your attention

Questions?

Are you interested in panel utilization?
Hein van der Steen, hein.vandersteen@btinternet.com
genewise R package

- high performance R package dedicated for GWAS and Poolseq data,
- utility functions, SNP selection based on multiple testing, mapping SNPs to genes, genewise statistics for gene ranking, annotation,
- SNP selection algorithm to produce Illumina microarray design,
- summary statistics for different steps to give control to the user,
- package is built using data.table, dplyr family, qvalue, multtest, ggplot2.

https://github.com/nehiljain/genewiseR
Mouse study

- Material
Mouse study

- Material
- Microarray
Mouse study

- Material
- Microarray
- Poolseq
Mouse study

- Material
- Microarray
- Poolseq
- Rnaseq
select (S) and control (C) lines with more than 350 samples,
select (S) and control (C) lines with more than 350 samples,
43k SNPs segregating with MAF > 0.05,
Methods, Microarray

- select (S) and control (C) lines with more than 350 samples,
- 43k SNPs segregating with MAF > 0.05,
- Use S-C contrast in allele frequency, association with RL in F2 resource population, LD and location to calculate LHI per SNP,
select (S) and control (C) lines with more than 350 samples,
43k SNPs segregating with MAF > 0.05,
Use S-C contrast in allele frequency, association with RL in F2 resource population, LD and location to calculate LHI per SNP,
Used LHI results to calculate LHGV per gene.
Results, Microarray

Fig. Manhattan plot for LHGV (left) with histogram (right-top) and qq (right-bottom) plots for protein coding genes.
4 select and 4 control pools with more than 20 individuals per pool,
Methods, Poolseq

- Sequencing → Alignment → SNP calling → SNP filtration
- Poolseq analysis → Multiple testing → Gene selection → Pathway analysis

- 4 select and 4 control pools with more than 20 individuals per pool,
 - mean coverage 50x per pool,
4 select and 4 control pools with more than 20 individuals per pool,
- mean coverage 50x per pool,
Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
Kacper Żukowski
Development of a Genetic Marker Panel to Predict Reproductive Longevity in Holstein Cattle

Methods, Poolseq

- 4 select and 4 control pools with more than 20 individuals per pool,
 - mean coverage 50x per pool,
- Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,
- gene selection based on modified TopQ method described by Lehne et al., 2011,
Methods, Poolseq

- Sequencing
- Alignment
- SNP calling
- SNP filtration
- Poolseq analysis
- Multiple testing
- Gene selection
- Pathway analysis

4 select and 4 control pools with more than 20 individuals per pool,
 - mean coverage 50x per pool,

Poolseq analysis based on Cochran–Mantel–Haenszel statistics (Kofler et al., 2011),
 - after filtration 6.4M of SNPs,

gene selection based on modified TopQ method described by Lehne et al., 2011,
 - 580K highly significant SNPs within 13.4K genes.
Fig. Manhattan plot for TopQ (left) with histogram (right-top) and qq (right-bottom) plots for protein coding genes.
Methods, Rnaseq

- Sequencing
- Alignment
- Differential Expression
- Multiple testing
- Pathway analysis

- 20 pools with more than 20 individuals per pool,
Methods, Rnaseq

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),
Methods, Rnaseq

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),
- 3 different contrasts:
Methods, Rnaseq

- Sequencing → Alignment → Differential Expression → Multiple testing → Pathway analysis

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),

- 3 different contrasts:
 - select and control,
Methods, Rnaseq

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),
- 3 different contrasts:
 - select and control,
 - ovary and pituitary tissue,
Methods, Rnaseq

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),
- 3 different contrasts:
 - select and control,
 - ovary and pituitary tissue,
 - reproductive and non-reproductive females,
Methods, Rnaseq

- 20 pools with more than 20 individuals per pool,
 - more than 163M reads per pool (MAPQ30),
- 3 different contrasts:
 - select and control,
 - ovary and pituitary tissue,
 - reproductive and non-reproductive females,
- differential expression analysis with utilization DESeq and edgeR Bioconductor R packages.
Results, Rnasea

Fig. Venn plots for highly significant genes representing different contrasts for ovary (left) pituitary (right) tissue.

Kacper Żukowski
Development of a Genetic Marker Panel to Predict Reproductive Longevity in Holstein Cattle
Fig. Plot of normalized mean versus log$_2$ fold change for the contrast S vs. C for ovary (left) pituitary (right) tissue.
Methods, WGS

- Sequencing
- Alignment
- SNP calling
- Imputation
- LD blocks estimation

individual WGS,

Fig. Accuracy of GEBVs of un-phenotyped individuals (Goddard and Hayes, 2009).
Methods, WGS

- Sequencing
- Alignment
- SNP calling
- Imputation
- LD blocks estimation

- individual WGS,
- 126 bulls with high and low EBVs for longevity,

Fig. Accuracy of GEBVs of un-phenotyped individuals (Goddard and Hayes, 2009).
Methods, WGS

- Sequencing
- Alignment
- SNP calling
- Imputation
- LD blocks estimation

- individual WGS,
- 126 bulls with high and low EBVs for longevity,
- mean coverage 1.5x per individual bull,

Fig. Accuracy of GEBVs of un-phenotyped individuals (Goddard and Hayes, 2009).
Methods, WGS

- Sequencing
- Alignment
- SNP calling
- Imputation
- LD blocks estimation

- Individual WGS,
- 126 bulls with high and low EBVs for longevity,
- Mean coverage 1.5x per individual bull,
- To estimate linkage disequilibrium between SNPs and estimate LD blocks,

![Fig. Accuracy of GEBVs of un-phenotyped individuals (Goddard and Hayes, 2009).](image-url)
Methods, WGS

- individual WGS,
- 126 bulls with high and low EBVs for longevity,
- mean coverage 1.5x per individual bull,
- to estimate linkage disequilibrium between SNPs and estimate LD blocks,
- the lack of power...

Fig. Accuracy of GEBVs of un-phenotyped individuals (Goddard and Hayes, 2009).
Results, Pathway analysis

Fig. Overall representation of Gene Ontology terms in more than 1400 cattle genes.

- selection for RL is selection for Fertility, Longevity, Ability to combine reproduction and lactation till late in life, Health and Robustness
Results, Pathway analysis

selection for RL is selection for Fertility, Longevity, Ability to combine reproduction and lactation till late in life, Health and Robustness

results of pathway analysis support the above

Fig. Overall representation of Gene Ontology terms in more than 1400 cattle genes.