Precision Livestock Farming in farmers practice

Precision livestock farming for dairy cows in a Protected Designation of Origin (PDO) system: a case study-application

Fabio Abeni, Andrea Galli
Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria
(Council of Agricultural Research and Economics - CREA)
Centro di Ricerca per le Produzioni Foraggere e Lattiero-casearie (FLC)

66th EAAP Meeting
31 AUGUST – 4 SEPTEMBER 2015
WARSAW, POLAND
Content

Introduction
CREA and PLF: from automatic milking to heat stress monitoring
Main tools for dairy cattle PLF
Heat stress and PLF in dairy cattle – Aim

Material and Methods
Location and animals: barn and management - Tools: the meteorological station
Tools: the TMR on-line analysis system (Dinamica Generale + Sgariboldi)
Tools: the SCR-SIVAM system

The conceptual framework
Location and animals: the data set - Statistical analysis

Results and Discussion
Climate data
Rumination and production data

Conclusion - Acknowledgments
Introduction

CREA and PLF: from automatic milking to heat stress monitoring

Welfare Assessment Based on Metabolic and Endocrine Aspects in Primiparous Cows Milked in a Parlor or with an Automatic Milking System

F. Abeni,1 L. Calamari,2 F. Calza,1 M. Speroni,1 G. Bertoni,1 and G. Pirlo1
1Consiglio per la Ricerca e Sperimentazione in Agricoltura, Istituto Sperimentale per la Zootecnia, Sezione Operativa di Cremona, I-26100 Cremona, Italy
2Istituto di Zootecnia, Facoltà di Agraria, Università Cattolica del Sacro Cuore, I-29100 Piacenza, Italy

J. Dairy Sci. 88:3542–3552

Milk Quality and Automatic Milking: Fat Globule Size, Natural Creaming, and Lipolysis

F. Abeni,1 L. Degano,2 F. Calza,1 R. Giangiacomo,2 and G. Pirlo1
1Consiglio per la Ricerca e Sperimentazione in Agricoltura, Istituto Sperimentale per la Zootecnia, Sezione Operativa di Cremona, I-26100 Cremona, Italy
2Consiglio per la Ricerca e Sperimentazione in Agricoltura, Istituto Sperimentale Lattiero Caseario, I-26900 Lodigiani, Italy

J. Dairy Sci. 88:3519–3529

Effect of Automatic Milking Systems on Milk Yield in a Hot Environment

M. Speroni,1 G. Pirlo, and S. Loll1
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Istituto Sperimentale per la Zootecnia, Sezione Operativa di Cremona, I-26100 Cremona, Italy

J. Dairy Sci. 91:3372–3384
doi:10.3168/jds.2008-1639

Evaluation of Milk Enzymes and Electrolytes, Plasma Metabolites, and Oxidative Status in Twin Cows Milked in an Automatic Milking System or Twice Daily in a Conventional Milking Parlor

F. Abeni,1* M. G. Terzano,† M. Speroni,*, L. Migliorati,*, M. Capelletti,*, F. Calza,† L. Bianchi,† and G. Pirlo†
*Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie, Sede distaccata per l’allevamento della vacca da latte, 26100 Cremona, Italy
†Centro di Ricerca per la Produzione delle Carni ed il Miglioramento Genetico, 00161 Monterotondo (Roma), Italy
†Dipartimento di Biologia Applicata, Università degli Studi di Perugia, 06121 Perugia, Italy

J. Dairy Sci. 89:4687–4693
Main tools for dairy cattle PLF (Hady et al., 1994; Borchers and Bewley, 2015; Titler et al., 2015)

- Days to first service: \(80 \rightarrow 60\) d
- Efficiency of detected estrus: \(50 \rightarrow 60\) %
- Conception rates: \(35 \rightarrow 50\)%

(detecting estrus is the major limitation to achieving a pregnancy) + Conception rates: \(35 \rightarrow 50\)% = In a 300-cow dairy herd \(\rightarrow\) increased net income $18,485
Introduction

Heat stress and PLF in dairy cattle (Christopherson and Kennedy, 1983; Soriani et al., 2013)

Aim

To report a case-study on the application of PLF to manage heat stress related problem in PDO dairy farming.

Figure 5. Relationship between daytime rumination time (% of day-nighttime rumination time) and maximum temperature-humidity index (THI) ($r = 0.84$; $P < 0.01$). Each symbol represents the average value of the percentage in classes of THI according to 2-unit intervals of THI.
Material and Methods

Location and animals: barn and management

Herd: 58 lactating dairy cows

«Baroncina» experimental farm, Lodi; 87 m a.s.l., Lat. 45°18'52"20 N, Lon. 09°30'14"04 E

Free stall barn, with forced ventilation

Tools: the meteorological station
Material and Methods

Tools: the TMR on-line analysis system (Dinamica Generale + Sgariboldi)
Material and Methods

Tools: the SCR-SIVAM system
Material and Methods

The conceptual framework

Diet formulation

Climate data

Cow data
- rumination
- activity

NIR forage analyzer

Feed management software
Material and Methods

Location and animals: the data set

3 groups selected according to DIM at the beginning of summer:

a. Early lactation (15-84 DIM)

b. Around peak of lactation (85-154 DIM)

c. Plateau phase (155-224 DIM)

For each record:
Calving date – Parity – Reproductive stage (open, inseminated, pregnant)

Rumination data: minutes/2 h; total day-time rumination minutes (from 08:00 to 20:00); total night-time rumination minutes (from 20:00 to 08:00)

Activity data: activity acts/2 h; total day-time activity acts (from 08:00 to 20:00); total night-time activity acts (from 20:00 to 08:00)

Statistical analysis

2 ANOVA

\[Y_i = \mu + a(\text{day}) + b(\text{lactation stage}) + c(\text{day} \times \text{lactation stage}) + A[\text{cow}(\text{day} \times \text{lactation stage})]_i + e_i \quad \text{(for daily records)} \]

\[Y_i = \mu + a(\text{day}) + b(\text{lactation stage}) + c(\text{time of the day}) + d(\text{day} \times \text{lactation stage}) + e(\text{day} \times \text{time of the day}) + f(\text{lactation stage} \times \text{time of the day}) + A[\text{cow}(\text{day} \times \text{lactation stage})]_i + e_i \quad \text{(for hourly records)} \]
Results and Discussion

Rumination data

Total daily rumination time

- Stage of lactation:
 - a (15-84 DIM)
 - b (85-154 DIM)
 - c (155-224 DIM)

- Total daily rumination time:
 - 14/06/2015: P < 0.001
 - 06/07/2015: P < 0.001

Graph showing the comparison of total daily rumination time across different stages of lactation.
Results and Discussion

Rumination data

Day-time rumination time

- a (15-84 DIM) $P < 0.001$
- b (85-154 DIM) $P < 0.001$
- c (155-224 DIM) $P < 0.001$

<table>
<thead>
<tr>
<th>Stage of lactation</th>
<th>14/06/2015</th>
<th>06/07/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (15-84 DIM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b (85-154 DIM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c (155-224 DIM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < 0.001
Results and Discussion

Rumination data

Night-time rumination time

- **a** (15-84 DIM) with $P < 0.001$
- **b** (85-154 DIM) with $P < 0.001$
- **c** (155-224 DIM) with $P < 0.001$

Data presented for stages of lactation:
- **14/06/2015**
- **06/07/2015**

Stage of lactation:
- a (15-84 DIM)
- b (85-154 DIM)
- c (155-224 DIM)
Results and Discussion

Rumination data

Daily distribution of rumination activity (min/2 h intervals)

Max discomfort
Results and Discussion

1. Climate effect on rumination
 • ~30% reduction in all the stages of lactation during heat stress vs. thermoneutrality
 • Reduction concentrated in day-time, less severe in night-time
 • Confirming Soriani et al. (2013)

2. Climate effect on production
 • ~15% reduction during heat stress vs. thermoneutrality
Conclusion

• From a PLF perspective, we can try to differentiate 2 TMR in a day: one for the night-time (higher rumination) and one for the day-time (lower rumination)

• Further PLF tools would aid us to reduce the negative impact of heat stress on summer milk production, namely for PDO cheeses requiring a higher milk quality for the curd forming process
Acknowledgments

Dr. Antonio Bruni ("Baroncina" Farm manager)

Dairy Farm project

SIVAM + SCR

Sgariboldi

Dinamica Generale

OmniGen-AF

FIS