Alternative protein sources for monogastrics: composition and functional assessment

S K Kar, A J M Jansman, L Kruijt, E H Stolte, N Benis, D Schokker, M A Smits

66th EAAP, Warsaw 01-09-2015

Soumya.kar@wur.nl
+31 (0) 687 500 105
Aim of project

- To characterize the protein component of new/alternative protein sources using proteomics

- To predict functionality of protein sources using bioinformatics

- To assess functional properties of new/alternative protein sources using animal models (mice and pigs)

- To elucidate underlying mechanisms
Topics of today’s presentation

- To characterize the protein component of new/alternative protein sources using proteomics
- To predict functionality of protein sources using bioinformatics
- To assess functional properties of new/alternative protein sources using animal models (mice and pigs)
- To elucidate underlying mechanisms
In vivo digestion process

Digestion of proteins in gastro-intestinal tract

- **Proteomics:** MS
- **Genomics:** NGS
- **Transcriptomics:** Microarray

- **Cytokines**: Systemic effects
- **Metabolites**: MS/GC

Digestion of proteins in gastro-intestinal tract

- **Commensal bacteria**
 - SCFA
 - LPS
 - Sphingolipids

- **Immune responses**
 - IL-18
 - IL-22
 - IL-23

- **Antigen presentation**
 - DC
 - B cell
 - T cell

- **Immune cell activation**
 - M cell
 - Plasma cell
 - Treg

Trends in Immunology

References:

- ELISA
- Transcriptomics
- Proteomics
- Genomics
Proteomic analysis of feed ingredients

Feed Ingredients

- **CAS**: Casein (feed grade)
- **DWP**: Delactosed Whey Powder
- **SDPP**: Spray Dried Plasma Protein
- **SBM**: Soybean Meal
- **WGM**: Wheat Gluten Meal
- **YMW**: Yellow Meal Worm

Proteomics analysis MS

1. **Protein Sample** (Filter Aided Sample Preparation)
2. Fragmented using enzyme
3. Spectrum of fragment generated
4. Identified peptides and proteins
5. Results
6. Match
7. Genomics driven database

Bioinformatic analysis
Bioinformatic analysis of feed ingredients

- List of identified peptides and proteins
- Selected top 90% of the total calculated protein content
- Amino acid composition (ACC) prediction

- Prediction of bioactivity

- In silico digestion with pepsin, trypsin and chymotrypsin

- Compare ACC values obtained with conventional analytical method
Results: proteomic analysis

<table>
<thead>
<tr>
<th>CAS</th>
<th>DWP</th>
<th>SDPP</th>
<th>SBM</th>
<th>WGM</th>
<th>YMW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of identified proteins

<table>
<thead>
<tr>
<th>70</th>
<th>130</th>
<th>210</th>
<th>748</th>
<th>586</th>
<th>43</th>
</tr>
</thead>
</table>

Number of proteins forming 90% of total protein fraction

| 3 | 3 | 25 | 68 | 24 | 19 |
Results bio-informatic analysis: amino acid composition

--- MS-based predicted ACC
--- Chemically defined ACC

r: 0.94
Results bio-informatic analysis: amino acid composition

- **CAS**: $r: 0.94$
- **DWP**: $r: 0.94$
- **SDPP**: $r: 0.86$
- **SBM**: $r: 0.92$
- **WGM**: $r: 0.94$
- **YMW**: $r: 0.87$

--- MS-based predicted ACC
--- Chemically defined ACC
Results: bioactivity

Proportion of bio-functional properties of proteins
• MS-based analysis provides more detailed information on the composition of complex protein sources compared to conventional (nutritional) analytical approaches.

• MS-based analysis allows the detection of individual proteins in complex matrices at very high resolution.

• MS-based approach was effective in predicting the amino acid composition of protein sources.

• MS-based analysis allows the prediction of bio-functional properties of protein.
Chemical composition of the experimental diet

was replaced by the “protein derived from new sources”. The diets were identical with respect to all other nutrients compared to AIN 93-G

<table>
<thead>
<tr>
<th>Item</th>
<th>SBM</th>
<th>CAS</th>
<th>DWP</th>
<th>SDPP</th>
<th>WGM</th>
<th>YMW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, g/kg</td>
<td>928 (914)</td>
<td>931 (957)</td>
<td>944 (930)</td>
<td>933 (924)</td>
<td>936 (917)</td>
<td>942 (929)</td>
</tr>
<tr>
<td>Crude protein, g/kg</td>
<td>150 (152.9)</td>
<td>263 (267.8)</td>
<td>79 (79.6)</td>
<td>240 (177.6)</td>
<td>140 (148.3)</td>
<td></td>
</tr>
<tr>
<td>Ash, g/kg</td>
<td>50 (43)</td>
<td>40 (29)</td>
<td>83 (77)</td>
<td>42 (36)</td>
<td>65 (65)</td>
<td></td>
</tr>
<tr>
<td>Crude fibre, g/kg</td>
<td>55</td>
<td>44</td>
<td>44</td>
<td>46</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Crude fat, g/kg</td>
<td>78 (75.5)</td>
<td>73 (65.3)</td>
<td>86 (73.7)</td>
<td>77 (66.6)</td>
<td>87 (70.3)</td>
<td>174 (160.1)</td>
</tr>
<tr>
<td>Starch, g/kg</td>
<td>251</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>268</td>
<td>261</td>
</tr>
<tr>
<td>Sugar, g/kg</td>
<td>295</td>
<td>263</td>
<td>403</td>
<td>263</td>
<td>271</td>
<td>263</td>
</tr>
<tr>
<td>NSP, g/kg</td>
<td>71</td>
<td>8</td>
<td>17</td>
<td>14.9</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Gross energy, KJ/g</td>
<td>171 (17.1)</td>
<td>166 (16.3)</td>
<td>184 (18.4)</td>
<td>18 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca, g/kg</td>
<td>5.9</td>
<td>5.5</td>
<td>10.0</td>
<td>5.2</td>
<td>5.2</td>
<td>6.1</td>
</tr>
<tr>
<td>P, g/kg</td>
<td>3.7</td>
<td>3.3</td>
<td>6.2</td>
<td>1.9</td>
<td>2.3</td>
<td>4.0</td>
</tr>
<tr>
<td>K, g/kg</td>
<td>1.0</td>
<td>1.0</td>
<td>16.5</td>
<td>4.5</td>
<td>4.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Na, g/kg</td>
<td>1.1</td>
<td>1.2</td>
<td>5.9</td>
<td>8.2</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Cl, g/kg</td>
<td>1.7</td>
<td>1.7</td>
<td>4.4</td>
<td>12.7</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Linoleic acid, g/kg</td>
<td>37.7</td>
<td>35.8</td>
<td>35.8</td>
<td>35.8</td>
<td>35.8</td>
<td>35.8</td>
</tr>
<tr>
<td>Electrolyte balance, Meq</td>
<td>266</td>
<td>94</td>
<td>388</td>
<td>115.2</td>
<td>106</td>
<td>92</td>
</tr>
</tbody>
</table>

Timeline

- Daily feed intake measurement
- Weekly body weight measurement
- Sampling of ileal tissue and content
- Sampling of blood and urine

Experimental diet

<table>
<thead>
<tr>
<th>Age of mice (days)</th>
<th>Day 0</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
</tr>
</tbody>
</table>

Animals: C57BL/6

Sex of Animal: Male
Performance parameters

Feed Intake

- **Average feed intake (g/day):**
 - Day 36-42: SBM, CAS, DWP, SDPP, WGM, YMW
 - Day 43-49: SBM, CAS, DWP, SDPP, WGM, YMW
 - Day 50-56: SBM, CAS, DWP, SDPP, WGM, YMW

Body weight gain

- **Body weight (g):**
 - Day 35: SBM, CAS, DWP, SDPP, WGM, YMW
 - Day 42: SBM, CAS, DWP, SDPP, WGM, YMW
 - Day 49: SBM, CAS, DWP, SDPP, WGM, YMW
 - Day 56: SBM, CAS, DWP, SDPP, WGM, YMW

Bars and whiskers represent means ± SD (n = 6).
- *P < 0.05
- **P < 0.01
- ***P < 0.001
Local response: Ileal gene expression profile (microarray)

<table>
<thead>
<tr>
<th>Comparison of experimental diet vs SBM</th>
<th>Number upregulated gene-sets</th>
<th>Number down regulated gene-sets</th>
<th>Number of significantly enriched gene-sets (FDR < 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>559</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>DWP</td>
<td>561</td>
<td>0</td>
<td>124</td>
</tr>
<tr>
<td>SDPP</td>
<td>591</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>WGM</td>
<td>516</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>YMW</td>
<td>559</td>
<td>0</td>
<td>98</td>
</tr>
</tbody>
</table>
Local response: Functional analysis of gene expression data at ileal tissue
Local response: ileal microbiota
Systemic response: Cytokines and Chemokines in blood

- Panel of 23 biomarkers were analysed
- Increase of granulocyte colony stimulating factor (G-CSF) in SBM fed mice
- Increase of Eotaxin for DWP- and YMW-fed mice
- Increase of IL-12p70 in DWP-fed mice
- Decrease of G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-5, IL-6, IL-13 and monocyte chemotactic protein (MCP) in WGM-fed mice compared to SBM-fed mice
Systemic response: Metabolites

- Metabolites
 - Amines (Urine)
 - Number of Analytes: 53
 - Acyl carnitines (Urine)
 - Number of Analytes: 16
 - Amines (Serum)
 - Number of Analytes: 41
Systemic response: Amines, urine
Mice experiment: conclusions and discussion

- Diets based on different protein sources affect host responses:
 - local (ileal microbiota, expression of (immune-related) genes)
 - systemic (serum cytokines/chemokines and urine metabolites)
- SBM differs clearly from the other experimental diets
- Diet specific effects identified (not shown here)
- DWP and YMW responses more similar to each other
- Knowledge may help to formulate monogastric diets
Acknowledgement

Soumya.kar@wur.nl
+31 (0) 687 500 105