Relationships between immune traits found in the blood and milk of Holstein-Friesian dairy cows

SJ Denholm, TN McNeilly, G Banos, MP Coffey, GC Russell, A Bagnall, MC Mitchell and E Wall

66th Annual Meeting – August 31st to September 4th Warsaw, Poland
Introduction

- Health and welfare of animals is an important issue
- Maintaining healthy herd requires early indication of issues
Introduction

- **Financial losses** from disease, culling and infertility within the herd
- Monitor and manage losses
- **Immune traits**!
Introduction

Immune traits

measurable in blood!
Introduction

Immune traits

measurable in blood!

1 Banos et al. (2013)
Introduction

Immune traits

measurable in blood!

health\(^1\)
fertility\(^1\)

\(^1\) Banos et al. (2013)
Introduction

Immune traits

- health

- fertility

measurable in blood!

- production

1 Banos et al. (2013)
Introduction

- Milk is **routinely** collected
- **Less invasive** resource
- Easily measurable
Aim

Relationships between immune traits in blood and milk?
Materials and Methods

- **288 Holstein-Friesian dairy cows**
- Housed at the SRUC Dairy Research Centre
Materials and Methods

- **288 Holstein-Friesian dairy cows**
- **Housed at the SRUC Dairy Research Centre**

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homegrown</td>
<td>64</td>
<td>76</td>
</tr>
<tr>
<td>Byproducts</td>
<td>77</td>
<td>71</td>
</tr>
</tbody>
</table>
Materials and Methods

- **288 Holstein-Friesian dairy cows**

- Housed at the SRUC Dairy Research Centre

- 11 milk and serum sampling points

- Apr 2013 – Jul 2014
Materials and Methods

- 288 Holstein-Friesian dairy cows
- Housed at the SRUC Dairy Research Centre
- Milk and serum samples assayed by ELISA
- 11 milk and serum sampling points
- Apr 2013 – Jul 2014
Materials and Methods

- 288 Holstein-Friesian dairy cows
- Housed at the SRUC Dairy Research Centre
- Milk and serum samples assayed by ELISA
- 11 milk and serum sampling points
- Apr 2013 – Jul 2014
- Natural antibodies (NAb)
- Haptoglobin (Hp)
- Tumor necrosis factor (TNF-α)
The Dataset

- 474 cows
- 8 immune traits
- 2,771 cows in pedigree
- 6 generations
- 4,712 records
- 2010 – 2014
- 4 year sampling period
Statistical analyses

• Data were analysed using a mixed linear animal model

\[y_{ijklmnop} = \mu + F_i + G_j + W_k + A_l + H_m + C_n + S_o + a_p + p_p + e_{ijklmnop} \]

(Gilmour et al., 2009)
Statistical analyses

\[y_{ijklmnop} = \mu + F_i + G_j + W_k + A_l + H_m + C_n + S_o + a_p + p_p + e_{ijklmnop} \]

- Diet group
- Genetic group
- Lactation week
- Lactation number
- Age at calving
- Assay technique
- Cow health status
- Year of calving
- Month of calving
- Overall mean
Statistical analyses

\[y_{ijkmnop} = \mu + F_i + G_j + W_k + A_l + H_m + C_n + S_o + a_p + p_p + e_{ijkmnop} \]

- Overall mean
- Genetic group
- Assay technique
- Lactation week
- Lactation number
- Age at calving
- Year of calving
- Month of calving
- Cow health status
- Cow
- Error
- Permanent environmental effect
Genetic parameters

Heritability

- **serum**
- **milk**

- **Hp**
- **NAb kHN**
- **NAb LPS**
- **TNFa**
Genetic parameters

Repeatability

- Serum
- Milk

<table>
<thead>
<tr>
<th>Protein</th>
<th>Serum Repeatability</th>
<th>Milk Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hp</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>NAb Kth</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>NAb LPS</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>TNFa</td>
<td>0.40</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Blood vs. milk NAb

- NAb KLH (blood) vs. NAb LPS (blood)
 - Phenotypic Correlation: 0.42
 - Genetic Correlation: 0.99

- NAb KLH (blood) vs. NAb KLH (milk)
 - Phenotypic Correlation: 0.64
 - Genetic Correlation: 0.77

- NAb KLH (milk) vs. NAb LPS (milk)
 - Phenotypic Correlation: 0.31
 - Genetic Correlation: 0.61

- NAb LPS (blood) vs. NAb LPS (milk)
 - Phenotypic Correlation: 0.72
 - Genetic Correlation: 0.88

- NAb LPS (milk) vs. NAb KLH (blood)
 - Phenotypic Correlation: 0.54
 - Genetic Correlation: 0.85
<table>
<thead>
<tr>
<th>Immune vs. milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk (kg)</td>
</tr>
<tr>
<td>NAb KLH</td>
</tr>
<tr>
<td>NAb LPS</td>
</tr>
<tr>
<td>TNF-α</td>
</tr>
<tr>
<td>Hp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlation Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk (kg)</td>
</tr>
<tr>
<td>-0.20 -0.57</td>
</tr>
<tr>
<td>-0.21 -0.58</td>
</tr>
<tr>
<td>-0.01 -0.45</td>
</tr>
<tr>
<td>-0.16 -0.53</td>
</tr>
<tr>
<td>NAb KLH</td>
</tr>
<tr>
<td>0.55 0.95</td>
</tr>
<tr>
<td>-0.02 -0.48</td>
</tr>
<tr>
<td>0.11 0.10</td>
</tr>
<tr>
<td>NAb LPS</td>
</tr>
<tr>
<td>-0.01 -0.37</td>
</tr>
<tr>
<td>0.09 0.38</td>
</tr>
<tr>
<td>TNF-α</td>
</tr>
<tr>
<td>0.07 0.27</td>
</tr>
<tr>
<td>Hp</td>
</tr>
</tbody>
</table>

Phenotypic Correlation *Genetic Correlation*
Immune vs. milk
Immune vs. SCC

- SCC (x10^3 /ml)
- NAb KLH (milk)
- NAb LPS (milk)
- TNF-α (milk)
- Hp (milk)

Phenotypic Correlation	Genetic Correlation
0.17 0.10 | 0.15 0.32 | 0.10 0.46 | 0.43 0.88
0.55 0.95 | -0.02 -0.48 | 0.11 0.10
-0.01 -0.37 | 0.09 0.30
0.07 0.27
Immune vs. SCC

<table>
<thead>
<tr>
<th></th>
<th>SCC (x10^3 /ml)</th>
<th>NAb LPS</th>
<th>Hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAb KLH</td>
<td>0.17</td>
<td>0.15</td>
<td>0.43</td>
</tr>
<tr>
<td>NAb LPS</td>
<td>0.10</td>
<td>0.32</td>
<td>0.88</td>
</tr>
<tr>
<td>NAb KLH</td>
<td>0.55</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>NAb LPS</td>
<td>0.95</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenotypic Correlation</td>
<td>Genetic Correlation</td>
<td></td>
</tr>
</tbody>
</table>

SRUC
Conclusions

• Immune traits in blood and milk are heritable, repeatable and strongly correlated

• Highlights potential as a less invasive resource for predictive modelling of animal immune traits
Next Steps . . .

- Associations with health and welfare
- Immune time series
Acknowledgements

The authors gratefully acknowledge funding from the Scottish Government and BBSRC. The Langhill study, EW, TMcN and GR are supported by the Scottish Government RESAS Strategic Research Programme 2011-16. SJD receives core funding from BBSRC (BB/K002260/1).
Acknowledgements

With thanks also to all staff, technicians and farm staff involved in the collection, management and analysis of the data used in this study.
Thanks for listening

For further information please contact:

Scott Denholm

Email: scott.denholm@sruc.ac.uk

Phone: +44 (0)131 651 9344
Leading the way in Agriculture and Rural Research, Education and Consulting