Screening for selection signatures in Norwegian Red

Borghild Hillestad¹, John Arthur Woolliams¹,², Solomon Antwi Boison³,
Dag Inge Våge¹, Gunnar Klemetsdal¹

¹Norwegian University of Life Sciences
²University of Edinburgh
³University of Natural Resources and Life Sciences Vienna
Motivation

• Genomic inbreeding using runs of homozygosity (ROH):
 – Rate of inbreeding (ΔF)
 – Effective population size (Ne)
Runs of homozygosity (ROH)

Chromosome

Ancient inbreeding

Recent inbreeding

\[F_{ROH} = \frac{\sum L_{ROH}}{\sum L_{AUTO}} \]
What if….

We could narrow this down?

1. Segmental level
2. SNP level
So what?

• Trace the cause
 – Define individuals that had a great impact on important traits
 – Detect strategic fortunate or unfortunate genetic moves
• Control for inbreeding
Is it possible?

• Trace selection over time
• Detect selective sweeps
 – Ongoing
 – Historical
Expectations

• ROH could give us an illustrative pattern on the genome showing:
 – Segments with an excess of homozygosity
 – Segments reaching towards homozygosity at different rates

• ROH could be able to map SNP specific
 – Inbreeding
 – Rate of inbreeding
 – Selection signatures
Objective

1. Locate segments and markers exposed to inbreeding
2. Map the rate of change over time on a segmental level
3. Search for selection signatures, both historical and ongoing
Animals and genotyping

• 381 Norwegian Red bulls (1971-2004)

• Illumina HD-panel (708K):
 – Individual call rate > 95 %
 – SNP call rate > 90 %
 – Autosomal SNP only
 – Hardy-Weinberg deviation $p < 10^{-6}$
Positional inbreeding from ROH

\[F_j = \frac{\sum_{i=1}^{N} s_{ij}}{N} \]

* Where \(s_{ij} \) is the status of the locus, whether it is within a ROH or not (1 or 0) and \(N \) is the total number of animals in the dataset
Screening for selection signatures in Norwegian Red
F_j BTA 6
Positional rate of change

\[L(\beta_j) = \prod_{i=1}^{N} \text{Bernoulli}(p_{ij}) \]

\[p_{ij} = \frac{\exp(\eta_{ij})}{1 - \exp(\eta_{ij})} \]

\[\eta_{ij} = [\eta_1 \ldots \eta_{N_j}]' \]

\[\log it(p_{ij}) = \eta_{ij} = \mu_j + \beta_j t_i \]

* Where \(\mu \) is the intercept and \(\beta \) is slope of the regression, while \(t \) is CGE of individual \(i \)
The slope of change at BTA 14

Screening for selection signatures in Norwegian Red

Norwegian University of Life Sciences
F_j BTA 6
The slope of change BTA 6
Take home messages

• ROH located segments and markers exposed to inbreeding

• ROH mapped the rate of change over time both over segments and markers

• ROH did also make it possible to search for selection signatures
 – Ongoing
 – Historical