Inactivation of porcine epidemic diarrhea virus (PEDV) by heat-alkalinity-time (HAT) pasteurization

Quist-Rybachuk GV1, Nauwynck HJ1, Kalmar ID2

1Laboratory of Virology, Ghent University, BE
2Veterinary R&D, Veos group, BE

Isabelle.Kalmar@Veos.be
Porcine Epidemic Diarrhea Virus (PEDV)

- swine alfa-corona virus
- faecal-oral transmission
- highly enteropathogenic
 - villus atrophy
 - acute, watery diarrhea

- Clinical outcome depends on age at infection (virus strain, lactogenic immunity, co-infections, ...)
 - neonatal & suckling: up to 100% mortality
 - weaners to adults: (usually mild) self-limiting
 - gestating sows: reproductive performance ↓
Transmission of PEDV by feed

- **US Field cases** with **entirely vegetal diets** (Dee et al., 2014)
 - Feed-borne (corn, SBM and Vit & Min diets)

- **Ontario cases** (USA → Eastern Canada)
 - Epidemiology: feed-borne transmission
 - **Infectious PEDV in SDPP** sampled at a feedmill (Pasick et al., 2014)
 - **Non-infectious PEDV in SDPP** at the production plant (US FDA, 2014)

- PEDV is sensitive to spray-drying and dessication
- SDPP was produced 10 wks prior to Ontario cases

Ingredient specific sensitivity (Dee et al., 2015)
- Outdoor storage (-25 to +20 °C): \(10^{4.2} \text{TIC}_{50}/g\)
- Inactivation: SDPP < 7 d vs SBM < 210 d (>180 d)
Extremely high Fecal shedding

sow milk (RNA)

lung macroph. (replication)

nasal/oral secretions (RNA)

acute phase serum (RNA)

equipment

clothing

lorries

feed

Adequate biosafety measures should also be in place for feed and its ingredients
Present Trial

Sensitivity of PEDV to HAT-pasteurisation

<table>
<thead>
<tr>
<th>Heat</th>
<th>Alkalinity</th>
<th>Time</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product temp ([T_{IN}; T_{OUT}])</td>
<td>Product pH ([pH_{IN}; pH_{OUT}])</td>
<td>Holding time ([\text{flow}])</td>
<td>product ([\text{plasma}])</td>
</tr>
</tbody>
</table>

- **Completely characterised process**
- Enables
- Laboratory replication of industrial conditions

Determination of sensitivity of PEDV

\[D\text{-value} = \text{time needed to inactivate 90\% of initial infectivity (1 log)}\]
Materials & Methods: Spike Inactivation Assays

1. **Test-samples:** matrix + virus (9:1-ratio)
 - Matrix: ● Minimum Essential Medium (MEM)
 ● porcine plasma

 sterile filtered heat inactivated seronegative for PEDV

 LDL↑
Materials & Methods: Spike Inactivation Assays

Inactivation (treatment)

Condition
- pH 7.2, 9.2 or 10.2
- Temperature 4, 40, 44 or 48°C

Duration
- 8 time-points up to 120 min
 - (0.25, 1, 3, 5, 10, 30, 60 or 120 min)

Matrix
- MEM or porcine plasma
Materials & Methods: Spike Inactivation Assays

Test Matrix 90% 10% PEDV Spike Test Sample INACTIVATION ASSAY

Virus titration
- residual infectivity
- whole test-sample
- end-point dilution assay
- 96-well plates

Survival Curve
- Titer (log_{10})
- Time
- spike
- D-value

Confirmation assays
- D-value, PEDV sterility
Results and Discussion: Survival curves

Spike-Inactivation Assay

- **Surviving PEDv titer (log₁₀ TCID₅₀/ml)**
- **Incubation time (min)**
- **4°C, 40°C, 44°C, 48°C**
- **LDL below LDL**

MEM pH 7.2

<table>
<thead>
<tr>
<th>Incubation time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 15 30 45 60 75 90 105 120</td>
</tr>
<tr>
<td>Surviving PEDv titer (log<sub>10</sub> TCID<sub>50</sub>/ml)</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Plasma pH 7.2

<table>
<thead>
<tr>
<th>Incubation time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 15 30 45 60 75 90 105 120</td>
</tr>
<tr>
<td>Surviving PEDv titer (log<sub>10</sub> TCID<sub>50</sub>/ml)</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Sensitivity of PEDV

- Stable in MEM at 4°C
- Stable in plasma at 4°C

Results and Discussion: Survival curves

- **Spike-Inactivation Assay**

 - **4 °C**
 - **Surviving PEDv titer (log₁₀ TCID₅₀/ml) 6**
 - **Incubation time (min)** 0 15 30 45 60 75 90 105 120

MEM pH 7.2

- **Surviving PEDv titer (log₁₀ TCID₅₀/ml) 6**

Plasma pH 7.2

- **Surviving PEDv titer (log₁₀ TCID₅₀/ml) 6**
Results and Discussion: Survival curves

Spike-Inactivation Assay

Surviving PEDv titer

<table>
<thead>
<tr>
<th>Incubation time (min)</th>
<th>4°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEM pH 7.2

Plasma pH 7.2

Sensitivity of PEDV

- **Stable in MEM at 4°C**
- **Stable in plasma at 4°C**
- **Stable in MEM at 40°C**
- **Sensitive to 40°C in plasma** (tailing effect in plasma)
Results and Discussion: Survival curves

Spike-Inactivation Assay

Surviving PEDv titer (log_{10} TCID_{50}/ml) vs Incubation time (min)

MEM pH 7.2

- Stable in MEM at 4°C
- Stable in plasma at 4°C
- Stable in MEM at 40°C
- Sensitive to 40°C in plasma (tailing effect in plasma)

Plasma pH 7.2

- Temp ↑ ⇒ Sensitivity ↑
- Sensitivity_{plasma} ↑↑
- Tailing_{plasma} ↓
Results and Discussion: Survival curves

Spike-Inactivation Assay

- **Surviving PEDv titer** (log$_{10}$ TCID$_{50}$/ml)
- **Incubation time (min)**
- **Temperature (°C)**: 4°C, 40°C, 44°C, 48°C

MEM pH 10.2

- Stable in MEM at 4°C
- Stable in plasma at 4°C
- Sensitive to 40°C in plasma (tailing effect in plasma)

Plasma pH 10.2

- Sensitive to 40°C in plasma

Sensitivity of PEDV

- Temp ↑ ≡ Sensitivity ↑
- Sensitivity$_{\text{plasma}}$ ↑↑
- Tailing$_{\text{plasma}}$ ↓
- pH 10.2 ≡ Not sensitive
- pH ↑ ≡ Sensitivity$_{\text{Temp}}$ ↑↑

D$_{48^\circ C, \text{pH} 10.2}$ = 35 s in plasma (UCL$_{95}$) 114 s in MEM
Results and Discussion: Confirmation assays

Spike-inactivation assay in tissue culture flasks

HAT determinants: H = 48°C; A = pH 10.2; $T = 2.5$ min and $T = 5$ min

Confirmation of D value

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Spike $(\log_{10} \text{TCID}_{50})$</th>
<th>Vol</th>
<th>pH</th>
<th>Temp $(°C)$</th>
<th>Time (min)</th>
<th>Surviving PEDV</th>
<th>Measured D value (sec or min)</th>
<th>Expected D value mean [UCL95]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>7.37</td>
<td>10 ml</td>
<td>10.2</td>
<td>48</td>
<td>2.5</td>
<td>4</td>
<td>23 sec</td>
<td>20 [35] sec</td>
</tr>
<tr>
<td>Plasma</td>
<td>7.65</td>
<td>1 ml</td>
<td>10.2</td>
<td>48</td>
<td>2.5</td>
<td>25</td>
<td>25 sec</td>
<td>20 [35] sec</td>
</tr>
</tbody>
</table>

- Measured D value (23-25 sec) $< UCL_{95}$ of expected D value (35 sec)
- D value is not dependent on test volume or magnitude of virus spike
- Similar results in confirmation assays of other HAT determinants

In other words

start (spike) **over 31 million** infectious particles is reduced to **25 infectious particles** in **2.5 min HAT-pasteurisation**
Results and Discussion: Confirmation assays

Spike-inactivation assay in tissue culture flasks
HAT determinants: H = 48°C; A = pH 10.2; \(T = 2.5 \text{ min} \) and \(T = 5 \text{ min} \)

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Spike</th>
<th>Vol</th>
<th>pH</th>
<th>Temp</th>
<th>Time</th>
<th>Surviving PEDV</th>
<th>Sterility obtained?</th>
<th>Expected time to sterility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>7.37</td>
<td>10 ml</td>
<td>10.2</td>
<td>48</td>
<td>5</td>
<td>0</td>
<td>YES</td>
<td>2.4 [4.2] min</td>
</tr>
<tr>
<td>Plasma</td>
<td>7.65</td>
<td>1 ml</td>
<td>10.2</td>
<td>48</td>
<td>5</td>
<td>0</td>
<td>YES</td>
<td>2.5 [4.4] min</td>
</tr>
</tbody>
</table>

HAT-treatment at 48°C and pH 10.2 during 5 min resulted in PEDV sterility of plasma spiked to 7.65 log\(_{10}\) TCID\(_{50}\) per ml

In other words

start (spike) over 31 million infectious particles

is reduced to 25 infectious particles in 2.5 min HAT-pasteurisation

and is reduced to 0 infectious particles in 5 min HAT-pasteurisation
Spike-inactivation assay in tissue culture flasks

HAT determinants: \(H = 48^\circ C; \ A = \text{pH} \ 10.2; \ T = 2.5 \text{ min} \) and \(T = 5 \text{ min} \)

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Spike (log_{10} TCID_{50})</th>
<th>Vol</th>
<th>pH</th>
<th>Temp (°C)</th>
<th>Time (min)</th>
<th>Surviving PEDV</th>
<th>Sterility obtained?</th>
<th>Expected time to sterility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>7.37</td>
<td>10 ml</td>
<td>10.2</td>
<td>48</td>
<td>5</td>
<td>0</td>
<td>YES</td>
<td>2.4 [4.2] min</td>
</tr>
<tr>
<td>Plasma</td>
<td>7.65</td>
<td>1 ml</td>
<td>10.2</td>
<td>48</td>
<td>5</td>
<td>0</td>
<td>YES</td>
<td>2.5 [4.4] min</td>
</tr>
</tbody>
</table>

Additional assay

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Spike (log_{10} TCID_{50})</th>
<th>Vol</th>
<th>pH</th>
<th>Temp (°C)</th>
<th>Time (min)</th>
<th>Surviving PEDV</th>
<th>Sterility obtained?</th>
<th>Expected time to sterility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>5.80</td>
<td>1 ml</td>
<td>10.2</td>
<td>48</td>
<td>4</td>
<td>0</td>
<td>YES</td>
<td>1.9 [3.4] min</td>
</tr>
<tr>
<td>Plasma</td>
<td>5.80</td>
<td>1 ml</td>
<td>10.2</td>
<td>48</td>
<td>3</td>
<td>0</td>
<td>YES</td>
<td>1.9 [3.4] min</td>
</tr>
</tbody>
</table>

Time to sterility occurred within the expected time
Summary

Spike-Inactivation Assay - survival curves

Results:
- **MEM**
 - **pH 7.2**:
 - $D_{48^\circ C} = 81$ sec ($UCL_{95} = 114$ sec)
 - **pH 10.2**:
 - $D_{48^\circ C} = 20$ sec ($UCL_{95} = 35$ sec)

- **Plasma**
 - **pH 7.2**:
 -
 - **pH 10.2**:
 -

Note:
- The survival curves show the decay of PEDV titer over time at different temperatures and pH levels.
- The graphs compare survival curves for 4°C, 40°C, 44°C, and 48°C conditions, with LDL and below LDL thresholds indicated.
Conclusions

1. Inactivation of PEDV is facilitated in plasma

2. Inactivation assays should take matrix into account

3. HAT-pasteurisation at $H_{48^\circ C}A_{pH10.2}T_{10\text{min}}$
 \[\Rightarrow \text{Inactivates 17.4 log}_{10} TCID_{50} / \text{ml plasma} \]
 (Quist-Rybachuk et al., submitted 2015)

4. PEDV is highly sensitive to HAT-pasteurisation, a redundant additional safety-step?

Standard processing of SDPP

- **Spray-Drying** (Gerber et al., 2014; Pujols and segalés, 2014)
 \[\Rightarrow \text{Inactivates min 4.2 log}_{10} TCID_{50} / \text{ml plasma} \]

- **Storage at low Aw** (Pujols and segalés, 2014)
 \[\Rightarrow \text{Inactivates min 2.8 log}_{10} TCID_{50}/g \text{ SDBP} \]
 in 3 w-4°C, 2 w at 12°C, 1 wk at 21°C
Further Take Home Messages

1. ALL ingredient types can be vectors of PEDV (vegetal (Dee et al., 2014), animal (Pasick et al., 2014), micro-ingredients)

 Risks of feedborne transmission of PEDV are NOT limited to animal-based ingredients.

2. Inactivation of event. infectious agents is anticipated in the processing of animal-based ingredients.

 Processing implies a safety-guarantee, not a safety-risk.

3. Securing feed-safety necessitates proper biosecurity at all points of the distribution chain.

4. PCR-tests do not inform on virus infectivity, they inform on standard necessity of processing.
Acknowledgments

PEDV syncytium

© Veos NV