Dimensionality of genomic information and APY inverse of the genomic relationship matrix

I. Pocrnic¹, I. Misztal¹, D.A.L. Lourenco¹, Y. Masuda¹, A. Legarra²

¹University of Georgia, USA
²INRA, France

EAAP, Belfast UK, Aug/Sep 2016
Introduction

• Single-step GBLUP

• Requires inverse of genomic relationship matrix (GRM)

• Proposed solution by Misztal et al. (2014)
 • GRM can be efficiently inverted by Algorithm for Proven and Young (APY) – recursion on small number of core animals

• Theory by Misztal (2016)
 • Limited dimensionality of genomic information
 • Limited number of effective SNP markers (ESM) or independent chromosome segments (Me)
Algorithm for Proven and Young (APY)

\[
G = \begin{bmatrix}
G_{cc} & G_{cn} \\
G_{nc} & G_{nn}
\end{bmatrix}
\]

- core animals (c)
- noncore animals (n)

\[
u_n = P_{nc}u_c + \Phi_n
\]

BV of noncore animals are linear function of BV of core animals

\[
G_{APY}^{-1} = \begin{bmatrix}
G_{cc}^{-1} & 0 \\
0 & 0
\end{bmatrix} + \begin{bmatrix}
-G_{cc}^{-1}G_{cn} \\
0 & 0
\end{bmatrix}M_{nn}^{-1} \begin{bmatrix}
-G_{nc}G_{cc}^{-1} & 0 \\
0 & 0
\end{bmatrix}
\]
ssGBLUP and APY

• Fragomeni et al. (2015); 100,000 genotyped US Holstein
• Lourenco et al. (2015); 36,000-50,000 genotyped US Angus
• Masuda et al. (2016); 570,000 genotyped US Holstein (< 2h)
• Ostersen et al. (2016); 13,000-21,000 genotyped Danish pigs
• Pocrnic et al. (2016 - submitted); US Holstein, US Jersey, US Angus, broiler chicken, and pigs
Independent chromosome segments (Me)

- $E(\text{Me}) = 4N_e L$
 Stam (1980)

- N_e – Effective population size
- L – Length of genome in Morgans

- $2N_e L$
 Hayes et al. (2009)

- $2N_e L/\log(N_e L)$
 Goddard et al. (2011)

- Many more ...
 Brard and Ricard (2015)
Objectives

• Test the theory of APY inverse with simulated data
• What is optimal number of core animals?
• Are GEBVs by APY more accurate than by regular inverse?
• How to determine dimensionality of GRM?
Simulation

• 6 populations (Ne=20,40,80,120,160,200)
• 10 discrete generations taken from historical population
• Mating random / no selection
• Generations 8-10 genotyped (75,000 individuals)
• Validation: Gen. 10 (no phenotypes)
• 30 Chromosomes (100 cM each)
• 49,980 SNPs
• 4,980 QTLs
• Heritability = 0.3
• 5 replications
 • QMSim software (Sargolzaei and Schenkel, 2009)
Number of core animals

• Construct $G_0 = \frac{ZZ'}{2\Sigma p_j(1-p_j)}$ (VanRaden, 2008)

• Find number of the largest eigenvalues in G_0 that explained 90, 95, 98 and 99 percent of variance

• Core animals were randomly selected
Dimensionality of genomic information

\[G_0 = \frac{ZZ'}{2 \sum p_j (1 - p_j)} \]

(VanRaden, 2008)

• Usually not full rank (usually blended)

• Dimensionality of \(G_0 \leq \min(N_{\text{SNP}}, N_{\text{IND}}, M_{e}) \)

• \(N_{\text{SNP}} \) – number of SNPs

• \(N_{\text{IND}} \) – number of genotyped animals

• Hypothesis: \(M_{e} \) – number of independent chromosome segments
Number of largest eigenvalues to account for a given variance

- NeL
- 2NeL
- 4NeL

Effective Population Size vs. Number of eigenvalues
Number of largest eigenvalues standardized to $Ne=20$
Correlations between GEBVs obtained with APY and regular inverse
Correlations between GEBVs obtained with APY and regular inverse
Accuracies as function of number of core animals
Conclusions

• Dimensionality of GRM function of effective population size
 • Affected by number of SNPs and genotyped animals
• Optimal number of core animals can be derived from eigenvalue analysis of GRM
• Accuracy is maximized when number of core animals corresponding to the number of eigenvalues explaining 98% of GRM variance
• Accuracy using APY is slightly greater than with regular inverse
Acknowledgements

- Grants from American Angus Association, Cobb-Vantress, Holstein Association USA, Pig Improvement Company, Smithfield Premium Genetics, Zoetis, and USDA NIFA 2015-67015-22936
Conclusions

• Dimensionality of GRM function of effective population size
 • Affected by number of SNPs and genotyped animals

• Optimal number of core animals can be derived from eigenvalue analysis of GRM

• Accuracy is maximized when number of core animals corresponding to the number of eigenvalues explaining 98% of GRM variance

• Accuracy using APY is slightly greater than with regular inverse

Thank you !!!