Genetic parameters for *Fasciola hepatica* in Irish dairy cows

Alan J. Twomey¹,², R.G. Sayers², R.I. Carroll⁴, N. Byrne², E. O'Brien², M.L. Doherty¹, J.C. McClure³, D.P. Berry²

¹School of Veterinary Medicine, UCD, Belfield, Dublin 4, Ireland
²Moorepark, Teagasc, Fermoy, Co. Cork, Ireland
³ICBF, Bandon, Co. Cork, Ireland
⁴AHI, Carrick on Shannon, Co. Leitrim, Ireland
Fasciola Hepatica (Liver Fluke)

- Parasitic disease in cattle and sheep
- Life cycle
- Environment
 - Grazing
 - Temperate climate
- Large prevalence
- Anthelmintic treatment
Why am I the only cow with liver fluke
Born in February 2009

4th lactation

Calved in April 2014

All slaughtered on 16/02/2015
Materials & Methods
Live F. hepatica

Photo courtesy of Animal Health Ireland
Liver damage caused by *F. hepatica* without live *F. hepatica*

Photo courtesy of Animal Health Ireland
No liver damage

Photo courtesy of Animal Health Ireland
Exposure

Live *F. hepatica*

Herd-mates 100 days prior diagnosis

No live *F. hepatica*

Herd-mates 100 days prior diagnosis

Born within 100 days of the diagnosed cow’s birthdate
Study Herd Data

- 69 dairy farms
- Binary trait
 - $\text{ODR} \geq 0.4 / \text{ODR} < 0.4$
- Exposed animals:
 - Herds with > 5 positive cows and $\geq 5\%$ prevalence
 - 48 herds exposed
Statistical Analysis

\[Y = X\beta + Z\gamma + \varepsilon \]

- *F. hepatica*-liver damage (n=16,734)
- binary trait for antibody response (n=6,907)
Statistical Analysis

\[Y = X\beta + Z\gamma + \varepsilon \]

- *F. hepatica*-liver damage
- binary trait for antibody response
 - HYS (herd-year-season of calving)
 - heterosis
 - recombination loss
 - age relative to parity median
 - parity
 - stage of lactation
 - factory-date (abattoir data only)
Statistical Analysis

\[Y = X\beta + Z\gamma + \varepsilon \]

- *F. hepatica*-liver damage
- binary trait for antibody response
 - HYS (Herd-year-season of calving)
 - heterosis
 - recombination loss
 - age relative to parity median
 - parity
 - stage of lactation
 - factory-date (abattoir data only)
 - direct additive genetic effects
 - residual
Prevalence of *F. hepatica* of sire’s daughters

Number of sires

Daughter prevalence

Prevalence of ≥30 daughters ≥10 herds

N=86
Prevalence of *F. hepatica* of sire’s daughters

≥ 20 daughters
≥ 8 herds
N=52
Results

<table>
<thead>
<tr>
<th></th>
<th>Abattoir data</th>
<th>Study herd data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td>47%</td>
<td>37%</td>
</tr>
<tr>
<td>Heritability</td>
<td>0.03 (0.01)</td>
<td>0.09 (0.02)</td>
</tr>
<tr>
<td>Genetic standard deviation</td>
<td>0.069</td>
<td>0.112</td>
</tr>
</tbody>
</table>

Genetic correlation between the two datasets was 0.37 (SE=0.283)
True Heritability

(Bishop and Woolliams, 2010)
(Bishop and Woolliams, 2010)
Conclusion

• Control *F. hepatica* by breeding
• Complementary to anthelmintic treatment
• Sustainable – permanent and cumulative
• Large amount of data available
Acknowledgements

Funding from the Irish Department of Agriculture, Food, and the Marine STIMULUS research grants HEALTHYGENES and FLUKELESS is greatly appreciated.