Treatment with lactic acid of concentrates alleviates the lack of inorganic P in dairy cow diets

Q. Zebeli, E. Humer, A. Khol-Parisini, H. Harder, and E. Mickdam

Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
Background

- **Phosphorus (P):** key mineral for rumen microbes and the host ruminant
- in high-producing cows: P mainly provided via concentrates
 -> phytate-bound

- incomplete degradation of phytate via ruminal microbial phytase
- -> typically inorganic P supplemented

P is the main polluting nutrients!

-> Methods to enhance the efficiency of the usage of phytate-P needed!
Background

- Treatments of grains with organic acids (i.e., Lactic Acid)

J. Dairy Sci. 98:8107–8120
http://dx.doi.org/10.3168/jds.2015-9913

Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro

H. Harder,† A. Khol-Parisini,∗† B. U. Metzler-Zebeli,†‡ F. Klevenhusen,∗† and Q. Zebel∗†

*Institute of Animal Nutrition and Functional Plant Compounds,
†Research Cluster Animal Gut Health, and
‡University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
Aim of the study

Evaluation of the effects of feeding concentrates steeped in 5% Lactic Acid (LA) with or without inorganic P supplementation on:

- Feed intake
- Milk production performance
- Metabolic health variables
Material and Methods

- 16 cows (4 primiparous, 12 multiparous)
- 12 Simmental cows (initial BW: 798 ± 24 kg)
- 4 Brown Swiss cows (initial BW: 642 ± 22 kg)

- Included: from the day of parturition until d 37 postpartum

- loose-housing stable with straw bedding
- individual feeders with electronic weighing scales and computer-regulated access gates

- allocated to 1 of 3 different experimental groups
Treatment of concentrate with LA

5% LA mixed soaked for 24 h
Ratio solution: grain: 1.2/1

Fed as TMR

Individual feeders
Different TMRs for early lactating cows

<table>
<thead>
<tr>
<th>Ingredient, % of DM</th>
<th>CON</th>
<th>LA (+P)</th>
<th>LA (-P)</th>
<th>Nutrient, % of DM unless stated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meadow hay</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>DM, % of FM</td>
</tr>
<tr>
<td>Grass silage</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>Ash</td>
</tr>
<tr>
<td>Corn silage</td>
<td>33.0</td>
<td>33.0</td>
<td>33.0</td>
<td>CP</td>
</tr>
<tr>
<td>Concentrate with inorganic P, without LA treatment¹</td>
<td>-</td>
<td>47.0</td>
<td>-</td>
<td>NDF</td>
</tr>
<tr>
<td>Concentrate with inorganic P, with LA treatment²</td>
<td>-</td>
<td>-</td>
<td>47.0</td>
<td>ADF</td>
</tr>
<tr>
<td>Concentrate without inorganic P, with LA treatment³</td>
<td>-</td>
<td>-</td>
<td>47.0</td>
<td>NFC</td>
</tr>
</tbody>
</table>

1 55% barley, 25% soybean meal, 9% rapeseed meal, 4% wheat bran, 3% dried beet pulp, 0.45% limestone, 0.25% salt,
0.8% monocalciumphosphate, 0.5% urea, and 2% mineral premix containing 4% P.

2 comprised of the same ingredients as the CON-concentrate but was soaked in 5% LA for 24 h prior to feeding.

3 contained: 56.6% barley, 25% soybean meal, 9% rapeseed meal, 4% wheat bran, 2% dried beet pulp, 0.60% limestone,
0.25% salt, 0.5% urea and 2% mineral premix without P and was soaked in 5% LA for 24 h prior to feeding.
Data Collection and Analysis

- Weekly analysis of TMRs
- Weekly determination of body weight
- Milked twice daily and milk yield recorded
- **Blood samples** collected 1 h before morning feeding on d 11, 18, 25 and 37 in milk
 - Analysis of selected blood metabolites related to glucose and lipid metabolism, liver enzymes (AST, GLDH, GGT), acute phase protein (SAA) and minerals (Ca, P)
- on d 36 and 37: 0, 2, 4, and 12 h after morning feeding
 - Analysis of diurnal variation of metabolites related to glucose and lipid metabolism as well as Ca and P
Statistical analysis

- ANOVA, Proc MIXED (SAS, 9.2)
- **Fixed effects:** diet, time (i.e., DIM or hour relative to morning feeding), diet x time
- **Random effects:** breed, lactation number
- Data from same cow: repeated measurements (first-order autoregressive)
- Tukey`s Test for comparisons among LSM
- **Linear Contrasts:**
 -> overall effect of LA (CON vs. average of LA(+P) and LA(-P))
 -> overall effect of inorganic P supplementation ((LA(-P) vs. average of CON and LA(+P))
- Pd0.05: significance; 0.05 < P d 0.10: trend
DMI of early lactation TMRs

Start of ad libidium feeding of early lactation TMRs

Additional ad libidium feeding of close-up TMR

CON LA (+P) LA (-P)

Diet: $P<0.01$
CON vs. LA: $P<0.01$
+P vs. -P: $P=0.02$
Glucose and NEFA

Diet: $P=0.10$
CON vs. LA: $P=0.28$
+P vs. -P: $P=0.04$

Diet: $P=0.14$
CON vs. LA: $P=0.07$
+P vs. -P: $P=0.07$
Diurnal Variation NEFA and Insulin

NEFA (mmol/L)
- Diet: $P=0.02$
- CON vs. LA: $P<0.01$
- +P vs. -P: $P=0.08$

Insulin (µg/L)
- Diet: $P=0.08$
- CON vs. LA: $P=0.03$
- +P vs. -P: $P=0.14$
Cholesterol and Serum Amyloid A

Diet:
- **CON vs. LA:** $P < 0.01$
- **+P vs. -P:** $P = 0.01$

- **Diet:** $P = 0.69$
- **CON vs. LA:** $P = 0.41$
- **+P vs. -P:** $P = 0.52$

Graphs:
- Cholesterol (mg/dL) vs. Day in milk
- Serum Amyloid A (µg/mL) vs. Day in milk
P and Ca:P

Diet: P=0.22
CON vs. LA: P=0.10
+P vs. -P: P=0.61

Diet: P=0.12
CON vs. LA: P=0.05
+P vs. -P: P=0.47
Milk Parameters and Body Weight

<table>
<thead>
<tr>
<th></th>
<th>Diet</th>
<th>SEM</th>
<th>P-Value<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
<td>LA (+P)</td>
<td>LA (-P)</td>
</tr>
<tr>
<td>Milk yield, kg/d</td>
<td>33.4</td>
<td>34.9</td>
<td>32.4</td>
</tr>
<tr>
<td>Milk composition, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>3.88</td>
<td>4.21</td>
<td>3.68</td>
</tr>
<tr>
<td>Protein</td>
<td>3.27</td>
<td>3.08</td>
<td>3.14</td>
</tr>
<tr>
<td>Lactose</td>
<td>4.79<sup>a</sup></td>
<td>4.66<sup>b</sup></td>
<td>4.68<sup>ab</sup></td>
</tr>
<tr>
<td>Fat:Protein</td>
<td>1.24</td>
<td>1.38</td>
<td>1.18</td>
</tr>
<tr>
<td>SCC, cells/mL</td>
<td>41,769</td>
<td>24,685</td>
<td>33,984</td>
</tr>
<tr>
<td>MUN, mg/dL</td>
<td>38.4</td>
<td>38.4</td>
<td>36.4</td>
</tr>
<tr>
<td>Milk pH</td>
<td>6.54</td>
<td>6.52</td>
<td>6.53</td>
</tr>
<tr>
<td>BW, kg</td>
<td>745.3</td>
<td>700.8</td>
<td>701.4</td>
</tr>
<tr>
<td>BW change, kg</td>
<td>-26.6</td>
<td>-26.4</td>
<td>-23.2</td>
</tr>
</tbody>
</table>
Conclusions

Feeding early-lactating cows concentrates steeped in 5% LA with or without inorganic P supplementation:

- impaired DMI during the first 2 weeks of ad libitum feeding
- did not affect milk production or body weight
- lowered serum NEFA, insulin and cholesterol
 -> improved energy status
- tended to increase serum P
 -> potential to save inorganic P supplements
Acknowledgments

- Team of Animal Nutrition at Vetmeduni Vienna
- Staff of research station Kremesberg (Vetmeduni)
- Funders:
 - „optGerste“
 - „functional feed for cows“
Thank you very much for your attention!
Further Blood Analysis

<table>
<thead>
<tr>
<th></th>
<th>Diet</th>
<th>SEM</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
<td>LA (+P)</td>
<td>LA (-P)</td>
</tr>
<tr>
<td>BHB, mmol/L</td>
<td>0.52</td>
<td>0.61</td>
<td>0.51</td>
</tr>
<tr>
<td>Lactate, mmol/L</td>
<td>0.69</td>
<td>0.76</td>
<td>0.72</td>
</tr>
<tr>
<td>BUN, mg/dL</td>
<td>36.7</td>
<td>34.3</td>
<td>36.9</td>
</tr>
<tr>
<td>TP, g/dL</td>
<td>7.27</td>
<td>7.11</td>
<td>7.37</td>
</tr>
<tr>
<td>Ca, mmol/L</td>
<td>2.36</td>
<td>2.38</td>
<td>2.39</td>
</tr>
<tr>
<td>AST, U/L</td>
<td>71.4<sup>b</sup></td>
<td>90.2<sup>a</sup></td>
<td>63.8<sup>b</sup></td>
</tr>
<tr>
<td>GLDH, U/L</td>
<td>21.92</td>
<td>14.44</td>
<td>8.41</td>
</tr>
<tr>
<td>GGT, U/L</td>
<td>22.3<sup>a</sup></td>
<td>23.4<sup>a</sup></td>
<td>15.7<sup>b</sup></td>
</tr>
<tr>
<td>Bilirubin, mg/dL</td>
<td>0.109</td>
<td>0.122</td>
<td>0.069</td>
</tr>
<tr>
<td>Bile acids, µmol/L</td>
<td>58.6<sup>a</sup></td>
<td>42.1<sup>ab</sup></td>
<td>28.5<sup>b</sup></td>
</tr>
</tbody>
</table>