Impact of information load on the centrality parameters of a pig trade network in Northern Germany

Kathrin Büttner and Joachim Krieter

Institute of Animal Breeding and Husbandry
Christian-Albrechts-University, Kiel, Germany

67th Annual EAAP Meeting Belfast, UK
August 29th to September 2nd, 2016

Session 64, Abstract number 23513, kbuettner@tierzucht.uni-kiel.de
• Useful application of network analysis for agricultural sciences
 ➔ Behavioural research
 - Social structure of animal groups (friendships, aggressions)
 - Abnormal behaviour (feather pecking, tail biting)
 ➔ Epidemiological studies
 - Prediction of disease transmission
 - Implementation of appropriate control measures
• Useful application of network analysis for agricultural sciences
 → Behavioural research
 - Social structure of animal groups (friendships, aggressions)
 - Abnormal behaviour (feather pecking, tail biting)
 → Epidemiological studies
 - Prediction of disease transmission
 - Implementation of appropriate control measures
Introduction

- Challenge of network analysis:

 Incomplete data sets & various information loads
- Challenge of network analysis:

 Incomplete data sets & various information loads

 → Missing or false positive nodes or edges
• Challenge of network analysis:

Incomplete data sets & various information loads

→ Missing or false positive nodes or edges

→ Missing information about some of their attributes
• Challenge of network analysis:

Incomplete data sets & various information loads

→ Missing or false positive nodes or edges

→ Missing information about some of their attributes
• Challenge of network analysis:

Incomplete data sets & various information loads

→ Missing or false positive nodes or edges

→ Missing information about some of their attributes
Aim of the study

1. Evaluating the variation of the centrality parameters between different network versions based on various information loads
2. Assessing the network robustness, meaning the point at which incomplete data sets may influence the centrality parameters
Three network versions

Network A
Contains all trade contacts with information about the supplier, the purchaser as well as the truck

- 978 nodes
- 2,280 edges

Network B
Only those trade contacts stayed in the data set with full geographical location

- 866 nodes
- 1,884 edges

Network C
Only trade contacts with additional information about the farms, e.g. farm type, stayed in the data set

- 188 nodes
- 625 edges
Materials & Methods

Centrality parameters - “What characterizes a central or important farm?”

→ **In-degree**: Number of direct ingoing trade contacts

→ **Out-degree**: Number of direct outgoing trade contacts

![Diagram showing centrality parameters with a central farm and other farms connected by arrows indicating trade contacts.]
Centrality parameters - “What characterizes a central or important farm?”

→ **Betweenness**: Number of shortest paths a farm lies on
Centrality parameters - “What characterizes a central or important farm?”

→ **Ingoing closeness**: Average distance from all other reachable farms

→ **Outgoing closeness**: Average distance to all other reachable farms
Comparison

1. **Between** different network versions

2. **Within** different network versions
Comparison

1. Between different network versions
 Influence of various information loads on the outcome of network analysis
Materials & Methods

1. Comparison **between different network versions**

 → Pairwise calculation of the Spearman Rank Correlation Coefficients of the centrality parameters for all network versions

 - Network A - Network B
 - Network B - Network C
 - Network A - Network C
Results: 1. Between different network versions

Spearman Rank Correlation Coefficients between the network versions

- In-degree
- Out-degree
- Betweenness
- Ingoing closeness
- Outgoing closeness

Centrality parameters:
- Network A - Network B
- Network B - Network C
- Network A - Network C
Results - 1. Between different network versions

Spearman Rank Correlation Coefficients between the network versions

<table>
<thead>
<tr>
<th>Centrality parameters</th>
<th>Network A - Network B</th>
<th>Network B - Network C</th>
<th>Network A - Network C</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingoing closeness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outgoing closeness</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

1. Comparison between different network versions

→ Most robust results for out-degree and outgoing closeness

- Highly right-skewed distribution of out-degree and outgoing closeness
- In-degree, ingoing closeness and betweenness had a smaller range
- It is more likely to remove a node with a relatively high in-degree than a node with a high out-degree
Comparison

2. **Within different network versions**

 Assumption: Network elements (nodes & edges) which appeared less frequently did not really belong to the studied producer community
Materials & Methods

2. Comparison within different network versions

→ Two removal scenarios
 - **Removal scenario 1** (Removal of edges according to their frequency of appearance)
 - **Removal scenario 2** (Removal of nodes according to their frequency of appearance)

→ Calculation of the Spearman Rank Correlation Coefficient between the original network version and each removal step
Results - 2. Within different network versions

Removal scenario 1: Removal of edges according to their frequency of appearance

Spearman Rank Correlation Coefficient

Network A

Network B

Network C

Fraction of removed farms (%)
Results – 2. Within different network versions

Removal scenario 2 Removal of nodes according to their frequency of appearance

![Graphs showing network A, B, and C with Spearman Rank Correlation Coefficient over fraction of removed farms (%)](image-url)
Discussion

2. Comparison within different network versions

→ Removal of nodes had less impact than removal of edges

- Explanation: Topology of the pork supply chain
- Farms with a low frequency are located at the margins of the network
- Removal of nodes only trims the margins of the network
- Edges with a low frequency can appear at every position in the network
- Removal of edges leads to a higher fragmentation of the network
Conclusion

- **Out-degree and outgoing closeness**: Stable ranking of the most central nodes in both comparisons
- **Reliable results** even if there are missing or false information in the data set
- Important if these centrality parameters are used for the **prediction of disease transmission** or the **implementation of disease control measures**
Thank you for your attention!

This project is kindly financed by the DFG.