Grazing with a high stocking density

Cindy Klootwijk, Animal Production Systems group

C.E. Van Middelaar, A. Van den Pol-Van Dasselaar, P.B.M. Berentsen and I.J.M De Boer
Grazing in the Netherlands

% Dutch dairy cows grazing

Years

100 90 80 70 60 50 40 30 20 10 0

CBS, 2016

Main reasons:

• Increase in stocking density
• More automation
• To control feed intake and manure distribution
Social demand for grazing

- Contributes to:
 - Image Dutch dairy sector
 - Typical Dutch landscape

- Goal of Dutch government:

 80% of Dutch dairy cows should graze in 2020
What about economic effects?

- Grazed grass is the cheapest source of feed

- Economic benefits of grazing (Evers et al., 2008; Van den Pol-van Dasselaar et al., 2014)
 - Increase with an increase in fresh grass intake
 - Dependent on grassland management
Importance of good grassland management

- Focus on grassland management
- Large variation in grassland productivity

- 35 to 69 MJ NE_L ha$^{-1}$ * $n=25$ Dutch dairy farms, 2012-2014

*NE_L = net energy for lactation
*Fertilization level: 225 kg N ha$^{-1}$
How to graze with high stocking density?

- economic challenges -

- Small home plot: restricted fresh grass allowance

- Optimize fresh grass intake
 - Adjust additional feeding
 - Minimize trampling damage
 - Minimize rejected areas (excreta)
How to graze with high stocking density?

- *environmental challenges*

- Different nutrient losses in barn and pasture
 (Van Bruggen et al., 2010; Vellinga et al., 2011)

\[\text{NH}_3 \uparrow \quad \text{NO}_3^- \uparrow \]

- Clustering of excreta in pasture: higher potential leaching
 - Minimize nutrient leaching
Aim of the study

- To analyse the effect of potential grazing systems on:

 - Economic performance
 - Grass production
 - Grass allowance
 - Grass intake
 - Environmental performance
 - Manure division barn/pasture
 - Manure distribution in pasture
Two potential grazing systems

- **Continuous Rotational Stocking (CRS)**
 - 6 day rotation
 - Fixed fences

- **Strip grazing (SG)**
 - 30 day rotation
 - Moving back and front wire

Both daily rotational systems
- Reduce selective grazing and clustering of excreta

- **CRS**
 - 6 day rotation
 - Fixed fences

- **SG**
 - 30 day rotation
 - Moving back and front wire
Grazing trial – Dairy Campus Leeuwarden (NL)
Set up grazing trial

- 60 milking cows on 8 ha = 7.5 cows ha\(^{-1}\)
- 7 hours per day
- Additional feeding: maize, concentrates
- **2016** and 2017: April-October
How much manure ends up in pasture?

- Measured 136 fresh manure patches
 - Height: ruler
 - 10 times per manure patch
 - Surface: flat-o-meter with 3 cm squares

Total manure exposure = volume per manure patch * # patches
How is this manure distributed in pasture?

- Recorded GPS coordinates of manure patches
 - CRS: 12 blocks
 - SG: 12 strips

- Chi-square test for equal distribution of manure patches
Manure exposure to pasture

<table>
<thead>
<tr>
<th>Manure patch characteristics</th>
<th>Unit</th>
<th>Average</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>cm</td>
<td>3.2</td>
<td>1.3-7.0</td>
</tr>
<tr>
<td>Surface</td>
<td>cm²</td>
<td>651</td>
<td>234-1,656</td>
</tr>
<tr>
<td>Volume</td>
<td>cm³</td>
<td>2,017</td>
<td>307-4,334</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of patches</th>
<th>Unit</th>
<th>Average</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per grazing day</td>
<td>#</td>
<td>64</td>
<td>16-95</td>
</tr>
<tr>
<td>Per cow per day</td>
<td>#</td>
<td>4</td>
<td>1-6</td>
</tr>
</tbody>
</table>

1.8 m³ solid manure in pasture per cow per 7 months

23% solid manure in pasture (7 h)
Manure distribution in pasture

- 12 CRS blocks: 10 not homogeneous
- 12 SG strips: 10 not homogeneous
Reasons for heterogeneous distribution

- More manure patches at entrance pasture
 - Cows enter/exit at same place
 - Cows gather at entrance
 - Before milking
 - During rainy weather

- With CRS more clusters of manure patches
 - More herding behaviour
Concluding remarks

- 23% solid manure in pasture for CRS and SG
 - Related to grazing time

- No significant difference between CRS and SG
 - CRS and SG improvement compared to conventional stocking
 - Further improvement: design cow traffic

- Impact on:
 - Grass production, allowance and intake
 - Economic and environmental performances
Good grassland management requires a helicopter view