Recent advances in pasture-based automatic milking systems

Dr Cameron Clark
Dairy Science Group,
The University of Sydney,
Camden, NSW, 2570

cameron.clark@sydney.edu.au
Viability of Australian AMS

- AMS opportunity: lifestyle, conditions of work, decrease labour and/or shift in time
- Low cost critical, high international milk price volatility.
- Low cost = high pasture and robot utilisation
- Can AMS follow well established pasture management principles?
- Can we achieve AMS grazing systems to fully utilise milking robots across the 24 hours of a day?

1. Conventional vs automatic milking pasture utilisation
2. 24h robot utilisation
1. Pasture Utilisation

- Can AMS follow well established pasture management principles?

- CMS: moderate stocking rate (MSR) (9.5ha, 30 cows, 2.5 cows/ha) and high stocking rate (HSR) (6.5ha, 30 cows, 3.8 cows/ha)
- AMS: 3.1 cows/ha, 41 ha, 128, mixed breed (Friesian, Illawarra and crossbred)
Results

• matching daily pasture consumption with pasture growth rate
• maintain a whole farm system pasture mass of around 2,000kgDM/ha (±200kgDM)
• pre- and post-grazing mass of 2,600 and 1,500kgDM/ha (±200kgDM), respectively

(Holmes and Roche, 2007; Garcia and Holmes, 2005).
Results

The graph shows the results over time, with data points for each month from March 2007 to March 2008. The x-axis represents the months, and the y-axis represents kg DM ha$^{-1}$. The graph indicates fluctuations in the data, with peaks and troughs visible throughout the year.
Results

![Image of cows in a milking system](image.png)

<table>
<thead>
<tr>
<th>System</th>
<th>MSR</th>
<th>HSR</th>
<th>AMS</th>
<th>s.e.d</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-grazing pasture mass (kg DM/ha)</td>
<td>2,330<sup>ab</sup></td>
<td>2,226<sup>b</sup></td>
<td>2,478<sup>a</sup></td>
<td>80</td>
<td>0.02</td>
</tr>
<tr>
<td>Post-grazing pasture mass (kg DM/ha)</td>
<td>1,496<sup>a</sup></td>
<td>1,403<sup>b</sup></td>
<td>1,355<sup>b</sup></td>
<td>42</td>
<td>0.01</td>
</tr>
<tr>
<td>Pasture utilised (kg DM/ha/yr)</td>
<td>12,987</td>
<td>13,015</td>
<td>14,518</td>
<td>1,522</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Conclusion

- Can AMS follow well established pasture management principles?
2. Improving milking robot utilisation

- Can we achieve AMS grazing systems to fully utilise milking robots across the 24 hours of a day?
Review: Milking robot utilization, a successful precision livestock farming evolution

A. J. John1,, C. E. F. Clark1, M. J. Freeman2, K. L. Kerrisk1, S. C. Garcia1 and I. Halachmi3

1Dairy Science Group, School of Life and Environmental Sciences, Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia; 2Tasmanian Institute of Agriculture Dairy Centre, University of Tasmania, Berryville 7320, Tasmania; 3Agricultural Research Organisation (ARO), The Volcani Centre, The Institute of Agricultural Engineering, P. O. Box 6, Bet Dagan 50250, Israel

(Received 17 June 2015; Accepted 16 February 2016)
TAS – Farm A

VIC – Farm B
Results
Results

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Gate Times</th>
<th>Feed Offered (pasture + silage)</th>
<th>% of Total Feed Offered</th>
<th>Active Access Time</th>
<th>% Daily Feed / Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0930-1730</td>
<td>6.7 ± 1.3</td>
<td>47%</td>
<td>8</td>
<td>5.9%</td>
</tr>
<tr>
<td>B</td>
<td>1730-0230</td>
<td>2.1 ± 0.6</td>
<td>15%</td>
<td>9</td>
<td>1.7%</td>
</tr>
<tr>
<td>C</td>
<td>0230-0930</td>
<td>5.3 ± 1.3</td>
<td>38%</td>
<td>7</td>
<td>5.4%</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Gate Times</th>
<th>Feed Offered (pasture + silage)</th>
<th>% of Total Feed Offered</th>
<th>Active Access Time</th>
<th>% Daily Feed / Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0930-1730</td>
<td>6.7 ± 1.3</td>
<td>47%</td>
<td>8</td>
<td>5.9%</td>
</tr>
<tr>
<td>B</td>
<td>1730-0230</td>
<td>2.1 ± 0.6</td>
<td>15%</td>
<td>9</td>
<td>1.7%</td>
</tr>
<tr>
<td>C</td>
<td>0230-0930</td>
<td>5.3 ± 1.3</td>
<td>38%</td>
<td>7</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

![Proportion of Intake (%) chart](image)
Results

![Graph showing time of day vs proportion]

- The graph illustrates the proportion of events occurring at different times of the day.
- The x-axis represents the time of day (hour) ranging from 0 to 24.
- The y-axis represents the proportion ranging from 0% to 50%.
- The data points suggest a peak in the proportion during midday, around 12 hours.
- The graph includes three lines, each representing different data sets or categories.
Conclusions

Can we achieve AMS grazing systems to fully utilise milking robots across the 24 hours of a day?
- Predominantly driven by diurnal variability in feed intake
- 30% increase in milking robot utilisation through a simple change in how we offer feed on farms
Dr Cameron Clark
Senior Research Fellow
Faculty of Veterinary Science
+64 477324206
cameron.clark@sydney.edu.au