Relationship between flavour volatiles and eating quality of lamb

Janeen McKinnie-Hill, Terence Hagan, Aurelie Aubrey, Linda Farmer, and Frank Monahan
Relationship between flavour volatiles and eating quality of lamb

1. Background
2. Experimental design
3. Sensory profiling analysis
4. Analysis of odours
5. Conclusions
1. Background
What is the problem?

• Concern in Irish lamb meat industry about ram lambs vs castrated male lambs
• Perception that ram meat is of a lower quality
• Ram lambs favoured in production
• Medium length branched chain fatty acids (BCFAs), phenols or indoles may cause off-odour
AIM

To determine the cause of any off-flavours in ram meat & see how it is affected by diet
2. Experimental design
Experimental design 1

<table>
<thead>
<tr>
<th>Farm</th>
<th>Diet</th>
<th>BSxSBx</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ram</td>
<td>Cast</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Fresh Grass</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Stubble Turnip</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Forage Rape</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Indoor</td>
<td>Conc</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Indoor</td>
<td>Clover silage</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Indoor</td>
<td>Grass silage</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

Total = 144 lambs
3. Sensory Profiling analysis
Sensory Profiling analysis

- 8 trained panellists tasted a 25mm slice of loin
- Grilled to internal temp of 75°C
- Every animal sampled
- Assessed sensory profiling attributes
- Data analysed using linear mixed model methodology using REML estimation
Sensory Profiling analysis - results for flavour related attributes

Definitions:
- **Crackling** = Crisp, Roasted fat
- **Meaty** = Beefy smell
- **Greasy** = Fatty, oily, chip shop
- **Fatty** = Greasy, fatty

Significant breed effects for Aroma of Fat

![Bar chart showing significant breed effects for Aroma of Fat](chart.png)

Diet.Sex. Breed Interaction

*
Sensory Profiling analysis - results

Definitions:

- **Juicy** = Juices on surface & on plate, moist
- **Tender** = Scale of tenderness
- **Cooked** = Scale of degree of cooked appearance

![Texture on cutting - Tender **](chart)

Definitions: **Juicy** = Juices on surface & on plate, moist; **Tender** = Scale of tenderness; **Cooked** = Scale of degree of cooked appearance.
Sensory Profiling analysis - results

Definitions:
- Tender = Scale of tenderness;
- Lumpy = Forms balls on chewing;
- Chewy = Requires a lot of chewing, hard to swallow.

Significant diet effects for Texture of the Meat

<table>
<thead>
<tr>
<th>Diet</th>
<th>Tender</th>
<th>Lumpy</th>
<th>Chewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass</td>
<td>***</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>Rape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turnip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass silage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clover</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grass silage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consumer score

AFB Agri Food and Biosciences Institute 10 Year Anniversary
4. Analysis of odours
GC-MS-O analysis

- Volatiles collected onto a Tenax trap
- 3 Assessors for each of 40 animals chosen

Grass Silage
Turnip
Concentrate
Grass

5 Rams + 5 Castrates from each
Results of GC-O

<table>
<thead>
<tr>
<th>Frequency of Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 5 10 15 20 25 30 35 40</td>
</tr>
</tbody>
</table>

- Rancid meat, Manure
- Sweet, Caramel
- Caramel
- Beefy
- Farmyard
- Rotten meat
- Beefy
- Dead animal
- Grass
- Sulphur
- Glue
- Thiols
- Grass 804
- Beefy, Meaty 818
- Smokey 867
- Chicken 871
- Medication 872
- Herbal, Green 903
- Citrus 906
- Potatoes 910
- Burning 915
- Burning, meat 922

Castrates
Rams
Main odours detected using GC-MS-O
Main odours detected using GC-MS-O

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet, caramel</td>
<td>2,3-Butanedione*</td>
</tr>
<tr>
<td>Caramel</td>
<td>3-Methyl butanal*</td>
</tr>
<tr>
<td>Glue</td>
<td>Toluene*</td>
</tr>
<tr>
<td>Grass</td>
<td>Hexanal*</td>
</tr>
<tr>
<td>Potatoes</td>
<td>Methional</td>
</tr>
<tr>
<td>Mushrooms</td>
<td>1-Octen-3-ol</td>
</tr>
<tr>
<td>Mushrooms, metallic</td>
<td>1-Octen-3-one*</td>
</tr>
<tr>
<td>Citrus, Lemon</td>
<td>Octanal*</td>
</tr>
<tr>
<td>Flowers, Honey</td>
<td>Phenylacetaldehyde*</td>
</tr>
<tr>
<td>Earthy, stale</td>
<td>E-2-Octenal*</td>
</tr>
<tr>
<td>Cigarettes, burning</td>
<td>p-Cresol*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burning</td>
<td>m-Cresol*</td>
</tr>
<tr>
<td>Burning rubber</td>
<td>Ethyl dimethyl pyrazine</td>
</tr>
<tr>
<td>Soap, floral</td>
<td>Nonanal*</td>
</tr>
<tr>
<td>Shortbread</td>
<td>2-Acetylthiazoline*</td>
</tr>
<tr>
<td>Lemon</td>
<td>Linalool*</td>
</tr>
<tr>
<td>Burning, popcorn</td>
<td>Furaneol</td>
</tr>
<tr>
<td>Melon, Grass</td>
<td>E-2-Nonenol*</td>
</tr>
<tr>
<td>Cucumber, watermelon</td>
<td>(E,Z)-2,6-Nonadienal</td>
</tr>
<tr>
<td>Tablets, ground</td>
<td>4-Ethyl phenol*</td>
</tr>
<tr>
<td>Meaty, onion</td>
<td>(E,E)-2,4-Heptadienal</td>
</tr>
</tbody>
</table>

* Tentative identification
Main odours detected using GC-MS-O
Odours from rams vs castrate lamb

Odours detected more in ram lamb

Frequency of detection

C G GS T
Dusty, wet ground

C G GS T
Mushrooms, metallic

C G GS T
Smokey

C G GS T
Lemon, citrus

C G GS T
Cucumber, watermelon

Odour (diet)
Odours from rams vs castrate lamb

![Graph showing frequency of detection of odours in rams and castrate lambs.](image)

- **Odours detected more in castrate lamb**:
 - Rotten meat
 - Beefy, Meaty
 - Popcorn
 - Wax, burning
 - Shortbread

Odour (diet)

- C
- G
- GS
- T

Frequency of detection

- C
- M

Legend

- C: Castrate lamb
- M: Ram

Note: The graph and table are used to compare the frequency of detection of various odours in castrate lambs versus rams.
Effect of diet

- **Medication 872**
- **Herbal, green 903**
- **Flowers, honey 1052**
- **Fresh, sweet 1159**
4. Conclusions
Conclusions

• There are sensory differences due to sex & diet
• Some odour differences detected by GC-O analysis
• Work in progress to confirm identities & quantify compounds
Compounds NOT detected using GC-MS-O...BUT detected by nose

- 4-Methyloctanoic Acid
- 4-Ethyloctanoic Acid
- 4-Methylnonanoic Acid
- Indole
- Skatole
- Etc...
<table>
<thead>
<tr>
<th>Compound</th>
<th>Literature Descriptors</th>
<th>GC-MS peak detected?</th>
<th>Assessor descriptors matching LRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-methyloctanoic acid</td>
<td>Goat, mutton, fatty, waxy</td>
<td>No</td>
<td>Burnt fat, hot oil, soap</td>
</tr>
<tr>
<td>4-methylnonanoic acid</td>
<td>Sweaty-sour, Sheepmeat, Waxy-sweet, soapy, fatty, wet wood</td>
<td>No</td>
<td>Wet ground, stale water, hot oil, soap</td>
</tr>
<tr>
<td>4-ethyloctanoic acid</td>
<td>Mutton, Fatty, Waxy, creamy, moldy, cheesy</td>
<td>No</td>
<td>Hot oil, vegetable oil, fat</td>
</tr>
<tr>
<td>Indole</td>
<td>Musty, Faecal, Mothball-like</td>
<td>No</td>
<td>Stale, Faeces</td>
</tr>
<tr>
<td>Skatole</td>
<td>Manure, Urine (Boar taint)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-cresol</td>
<td>Animal, Barnyard-like, Leather, Faecal</td>
<td>Yes</td>
<td>Leather belt, Rubber, Wax</td>
</tr>
<tr>
<td>2-Isopropyl phenol</td>
<td>Ink-like & Fruity</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,4-dimethylphenol</td>
<td>Horse stable-like, fecal, ink-like</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thymol</td>
<td>Phenolic, Medicinal</td>
<td>No</td>
<td>Tablets</td>
</tr>
<tr>
<td>3-Isopropyl phenol</td>
<td>Ink-like & leather-like</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethyl disulphide</td>
<td>Sweet, honey, acrid, cooked vegetables, sulphur</td>
<td>Yes</td>
<td>Bad eggs, rotten eggs, sulphur, toffee, boiled veg</td>
</tr>
<tr>
<td>3-methylbutanoic acid</td>
<td>Sweaty, Vomit, Parmesan cheese</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>