Recording of feed efficiency under on-farm conditions

Franz Steininger, Maria Ledinek, Leonhard Gruber, Birgit Fuerst-Waltl, Karl Zottl and Christa Egger-Danner

steininger@zuchtdata.at
Table of content

• The project „Efficient Cow“
• Recorded data
• Estimation of dry matter intake (DMI)
• Standardizing on 100th day in milk
• Results
• Conclusions
The project „Efficient Cow“
Recording feed efficiency is a challenge!

• Ways of recording feed efficiency
 • Record the feed intake precisely for a small group of animals on station
 • Estimate feed intake of many animals on farm based on animal and diet information with impact on the feed intake
 • Work with further auxiliary traits like mid-infrared-spectra

• Efficient Cow
 • Finding ways to record/estimate feed efficiency on-farm
 • Looking for possible auxiliary traits for practical use
Recorded data
Data recorded

- General information about farm (housing, feeding, ...)
- Recording of health data
- Documentation of claw trimming
- Test for ketosis based on milk
- Linear scoring of all cows across lactations
- At each time of milk recording in 2014
 - Body weight, body measures, BCS, lameness scoring
 - Information about diet and estimation of feed intake
 - Routine information about milk recording + MIR-spectra
- Austrian main breeds
 - Fleckvieh / Simmental (FL), Brown Swiss (BS), Holstein (HF)
Recorded data – Fleckvieh / Simmental (FL)

<table>
<thead>
<tr>
<th>COWS</th>
<th>N</th>
<th>LACT 1</th>
<th>LACT 2</th>
<th>LACT >=3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>3,942</td>
<td>25,913</td>
<td>25.06 (±5.97)</td>
<td>27.94 (±8.37)</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>3,992</td>
<td>29,812</td>
<td>685 (±79)</td>
<td>735 (±83)</td>
</tr>
<tr>
<td>WAIST</td>
<td>3,989</td>
<td>30,078</td>
<td>251 (±14)</td>
<td>259 (±14)</td>
</tr>
<tr>
<td>CHEST</td>
<td>3,989</td>
<td>30,086</td>
<td>208 (±10)</td>
<td>212 (±10)</td>
</tr>
<tr>
<td>MUSC 1-9</td>
<td>3,984</td>
<td>29,888</td>
<td>5.58 (±1.21)</td>
<td>5.72 (±1.33)</td>
</tr>
<tr>
<td>BCS 1-5</td>
<td>3,988</td>
<td>30,089</td>
<td>3.32 (±0.52)</td>
<td>3.33 (±0.55)</td>
</tr>
<tr>
<td>LAME 1-5</td>
<td>3,987</td>
<td>29,812</td>
<td>1.13 (±0.43)</td>
<td>1.2 (±0.53)</td>
</tr>
</tbody>
</table>
Estimation of dry matter intake (DMI)
Estimating feed intake (Gruber et al. 2004)

feed intake = breed + lactgroup + lactday + weight +
+ milk yield + concentrate + NEL (forage)

- **breed**: Fleckvieh, Brown Swiss or Holstein
- **lactgroup**: lactation group (1, 2+3, e4)
- **lactday**: day in milk (days)
- **weight**: body weight (kg)
- **milk yield**: milk yield, not ECM (kg/day)
- **concentrate**: concentrate amount (kg/day)
- **NEL (forage)**: net energy lactation in forage (MJ/kg)
Comparison of 5 models predicting feed intake

<table>
<thead>
<tr>
<th>Model</th>
<th>obs.</th>
<th>pred.</th>
<th>RMSPE</th>
<th>Bias</th>
<th>Regression</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC</td>
<td>20.3</td>
<td>21.7</td>
<td>1.80</td>
<td>64.7%</td>
<td>4.1%</td>
<td>31.3%</td>
</tr>
<tr>
<td>NorFor</td>
<td>21.3</td>
<td>21.7</td>
<td>1.52</td>
<td>6.1%</td>
<td>37.7%</td>
<td>56.3%</td>
</tr>
<tr>
<td>TDMI</td>
<td>20.3</td>
<td>20.2</td>
<td>1.71</td>
<td>0.3%</td>
<td>22.3%</td>
<td>77.3%</td>
</tr>
<tr>
<td>Zom</td>
<td>20.3</td>
<td>21.9</td>
<td>3.16</td>
<td>26.3%</td>
<td>27.9%</td>
<td>45.8%</td>
</tr>
<tr>
<td>Gruber</td>
<td>20.3</td>
<td>20.5</td>
<td>1.17</td>
<td>3.6%</td>
<td>2.9%</td>
<td>93.4%</td>
</tr>
</tbody>
</table>

Models: NRC (NRC, 2001), NorFor (Volden et al. 2011), TDMI (Huhtanen et al. 2011), Zom (Zom et al., 2012), Gruber (Gruber et al. 2004)

RMSPE: square root of mean square prediction error (MSPE) in kg DM/day

Jensen et al., 2015
Observed vs. predicted feed efficiency

\[y = 0.21 + 0.792 \times \]

\textit{RMSE} = 0.12 kg
\textit{R}^2 = 0.82
Pearson Corr. = 0.91
Spearman Rank Corr. = 0.89

Gruber et al., 2016 (in preparation)
Standardizing for 100th day in milk
Standardizing

• Weight, DMI, NEL-Intake, ECM and ECM / NEL got standardized for lactation day 100 and no pregnancy
• Added the mean of the estimated random effects of each cow and test day to the expected value of an average cow on this farm
• Used software
 • R version 3.2.4 - R Core Team (2016)
 • R packages
 • lme4 – Bates et al. (2014)
 • data.table – Dowle et al.(2015)
 • ggplot2 – Wickham (2009)
Used Models

<table>
<thead>
<tr>
<th>Y</th>
<th>Lactation group**</th>
<th>Day in milk</th>
<th>Day of gestation</th>
<th>Weight</th>
<th>MJ NEL / kg DMI</th>
<th>Organic farm</th>
<th>Maize %***</th>
<th>g XP / MJ NEL</th>
<th>Age at first calving</th>
<th>* farm</th>
<th>* animal within fram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>X</td>
<td>log²</td>
<td>X²</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DMI</td>
<td>X</td>
<td>log²</td>
<td>X³</td>
<td>X²</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NEL-Intake</td>
<td>X</td>
<td>log²</td>
<td></td>
<td>X²</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ECM</td>
<td>X</td>
<td>X²</td>
<td>X²</td>
<td>X²</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ECM / NEL</td>
<td>X</td>
<td>X³</td>
<td>X²</td>
<td>X²</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

* ... (Nested) random effects are marked grey, all others used as fixed effects
** ... 1., 2. and ≥3. Lactation, except ECM/NEL: 1.+2. and ≥3. Lactation
*** ... 3 groups: no maize, < 35% and ≥35% maize in diet
<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
<th>LACT 1</th>
<th>LACT 2</th>
<th>LACT ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 2796 cows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 observations in lact.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>477</td>
<td>983</td>
<td>664 (±59)</td>
<td>707 (±62)</td>
<td>751 (±69)</td>
</tr>
<tr>
<td>ECM</td>
<td>9.88</td>
<td>49.20</td>
<td>27.82 (±5.2)</td>
<td>30.79 (±5.26)</td>
<td>31.87 (±5.47)</td>
</tr>
<tr>
<td>DMI</td>
<td>11.07</td>
<td>27.27</td>
<td>18.98 (±2.22)</td>
<td>20.88 (±2.26)</td>
<td>21.54 (±2.34)</td>
</tr>
<tr>
<td>NEL-INTAKE</td>
<td>94.3</td>
<td>181.7</td>
<td>129.4 (±12.6)</td>
<td>142 (±13.6)</td>
<td>144.9 (±14.5)</td>
</tr>
<tr>
<td>ECM / LM0.75</td>
<td>0.092</td>
<td>0.351</td>
<td>0.212 (±0.035)</td>
<td>0.225 (±0.036)</td>
<td>0.223 (±0.037)</td>
</tr>
<tr>
<td>ECM / NEL</td>
<td>0.116</td>
<td>0.308</td>
<td>0.219 (±0.025)</td>
<td>0.220 (±0.027)</td>
<td>0.220 (±0.028)</td>
</tr>
<tr>
<td>FORAGE-ECM %</td>
<td>32.3</td>
<td>99.1</td>
<td>61.0 (±7.9)</td>
<td>57.3 (±8.3)</td>
<td>56.5 (±8.3)</td>
</tr>
</tbody>
</table>
Link between weight and DMI (FL)

![Graph showing the relationship between weight and DMI.](image-url)
Link between weight and ECM (FL)
Link between weight and ECM / metab. weight (FL)
Link between weight and ECM / NEL (FL)

![Graph showing the relationship between weight and ECM/NEL (FL) with data points and trend lines for different lactation stages.](image)

- **X-axis**: WEIGHT (kg)
- **Y-axis**: ECM / NEL (kg / MJ)

Legend:
- **1./2. Lact.**
- **≥3. Lact.**

Mean of weight (FL)
Conclusions
Conclusions for practical use

• Data recording from about 5,300 cows under on-farm-conditions was a big challenge
• Body weight has high impact on feed efficiency
• Recording of body weight was easier to handle than taking different body measures, but time of weighing influences result
• Practical use of diet information would need also reliable weights and information on mobilization (maybe from MIR spectra)
• With estimated DMI efficiency traits like residual feed intake (RFI) doesn’t make sense and results have been carefully interpreted.
 • What do we really see, when cows differ in kg ECM / MJ NEL?
Perspective

• Discussion about Findings out of Efficient Cow started in Austria

• Short term: only weight (or auxiliary traits like conformation traits - frame, muscularity, body measures) as important impact factor on feed efficiency possible

• Long term: estimation of breeding values for claw health and metabolism interesting

• But all results and ideas have to get discussed with our partners in Germany and Czech Republic
Acknowledgement

Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW) in Austria, Federal States of Austria and the Federation of Austrian Cattle Breeders for the support within the projects „Efficient cow“.

Project partner within the project „Efficient Cow“.
Gene2Farm (EU-FP7-KBBE-2011-5-P Nr.: 289592).
Elanco for sponsoring the milk ketose test
Thank you for your attention!