Plasma cholesterol and adaptation of metabolism and milk production in feed restricted cows

J.J. Gross\(^1\), A.-C. Schwinn\(^1\), E. Müller\(^2\), A. Münger\(^2\), F. Dohme-Meier\(^2\) and R.M. Bruckmaier\(^1\)

\(^1\)Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland
\(^2\)Agroscope, Tioleyre 4, P.O. Box 64, 1725 Posieux, Switzerland
Background: Metabolism and cholesterol during early lactation in dairy cows

- Adipose tissue is mobilized
- Increasing supply of NEFA
- Liver: oxidation of fatty acids or re-esterification to triglycerides (TG)
- TG synthesis exceeds export of TG as very low density lipoproteins (VLDL)

Risk of fatty liver

Modified from Kessler et al., JDS 2014 and Gross et al., PlosOne 2015
Objectives

Are cholesterol levels in early lactation related to short-term adaptations of metabolism and milk production?

- Early lactation with low cholesterol concentrations
- Exposure to a transient concentrate withdrawal (one week) that further aggravates energy deficiency
Material and Methods

- 15 multiparous Holstein dairy cows
- Experimental period 21 days (first week for adaptation) starting at 24±7 days in milk
- Pasture + additional concentrate in week 1 and 3 of the experiment; **concentrate withdrawal in week 2**
- Blood sampling daily, milk samples twice/day
- **Retrospective grouping** according to total cholesterol concentration (median: 3.36 mmol/l) in week 1
- Statistical analysis: Mixed models (SAS, v. 9.4), group, time fixed effects, cow random subject
Results

Total cholesterol

<table>
<thead>
<tr>
<th></th>
<th>H-Chol</th>
<th>L-Chol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawal of concentrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reintroduction of concentrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- day: $P = 0.2658$
- group: $P < 0.0001$
- day*group: $P = 0.9997$
Results

Phospholipids

HDL

LDL

Free cholesterol

Cholesteryl esters
Results

Milk yield

Withdrawal of concentrate
Reintroduction of concentrate

* Different from day 1 in H-Chol (P<0.05)
Different from day 1 in L-Chol (P<0.05)

- Milk yield (kg/d)
- Day of experiment

- H-Chol
- L-Chol

<table>
<thead>
<tr>
<th>day</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1626</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>day*group</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.6601</td>
</tr>
</tbody>
</table>
Results

Glucose

Different from day 1 in H-Chol (P<0.05)

Insulin

Different from day 1 in L-Chol (P<0.05)
Results

NEFA

BHB

*Different from day 1 in H-Chol (P<0.05)

#Different from day 1 in L-Chol (P<0.05)
Results

Triglycerides

VLDL

Day of experiment

Withdrawal of concentrate

Reintroduction of concentrate

Triglycerides (mmol/L)

VLDL (mmol/L)

day: $P = 0.0698$

group: $P < 0.0001$

day*group: $P = 0.9766$

H-Chol

L-Chol
Results

ASAT

GGT

Withdrawal of concentrate
Reintroduction of concentrate

<table>
<thead>
<tr>
<th>Day of experiment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAT (U/L)</td>
<td></td>
</tr>
<tr>
<td>H-Chol</td>
<td></td>
</tr>
<tr>
<td>L-Chol</td>
<td></td>
</tr>
</tbody>
</table>

GGT (U/L)															
H-Chol															
L-Chol															

Statistical analysis:

- day: $P = 0.8457$
- group: $P < 0.0001$
- day*group: $P = 0.9990$
- day: $P = 1.0000$
- group: $P = 0.1716$
- day*group: $P = 0.9999$
Conclusions

- Circulating **cholesterol levels** in early lactation are associated with the extent of short-term adaptation responses to energy availability:
 - but: no changes of lipoproteins and phospholipids during aggravated energy deficiency in early lactation
 - reduction and recovery of milk yield
 - adaptation of glucose, NEFA, BHB and insulin
 - Activity of ASAT
Thank you for your attention!