Effect of mating strategies on genetic and economic outcomes in a Montbéliarde dairy herd

MARIE BERODIER

M. BROCHARD, C. DEZETTER, N. BAREILLE, V. DUCROCQ

Study funded by MO3
The Montbéliarde breed in France

In 2017

- Dual purpose breed
- 2nd dairy breed in France
 - 17.7% of French dairy cattle
 - 388,124 lactations recorded

https://www.montbeliarde.org/localisation-nationale-fr.html

Number of lactations

80,087
2009: X- Sexed semen

↑ within herd selection intensity
2009: X-Sexed semen

↑ within herd selection intensity

2011: Commercial female genotyping

↑ within herd selection accuracy
2009: X-Sexed semen

↑ within herd selection intensity

2011: Commercial female genotyping

↑ within herd selection accuracy

↑ within herd genetic gain
2009: X-Sexed semen

↑ within herd selection intensity

2011: Commercial female genotyping

↑ within herd selection accuracy

↑ within herd genetic gain
2009: X- Sexed semen

2011: Commercial female genotyping

What is the impact of alternative replacement and genotyping strategies on genetics and economics at herd level?
Simulation study - Method

ECOMAST simulation program

• 77-cows Montbéliarde herd
Simulation study - Method

ECOMAST simulation program

- 77-cows Montbéliarde herd

- Daily milk production
- Gestation status
- Mastitis status
- Health status
- Culling probability
- ...

© Umotest
August 27th 2018
EAAP ANNUAL MEETING
Simulation study - Method

ECOMAST simulation program

- 77-cows Montbéliarde herd
- Pasture based farming system with relatively high milk price

- Daily milk production
- Gestation status
- Mastitis status
- Health status
- Culling probability
- ...
Simulation study - Method

ECOMAST simulation program

- 77-cows Montbéliarde herd
 - Daily milk production
 - Gestation status
 - Mastitis status
 - Health status
 - Culling probability
 - ...

- Pasture based farming system with relatively high milk price
- Females genotyped when 15-day old (40€ all included)
Simulation study - Method

- 15 years of simulation
 - 5 initialization years: no genotyping, no sexed nor beef breed semen
 - 10 years of different strategies
Simulation study - Method

- 15 years of simulation
 - 5 initialization years: no genotyping, no sexed nor beef breed semen
 - 10 years of different strategies

- Strategies:

 - Heifers genotyping
 - 0%
 - 100%

 - Use of sexed semen
 - Yes
 - No

 - Use of beef breed semen
 - Yes
 - No

August, 27th 2018
Variation in ΔG of breeding objective from year 0 to year 10

- No Genotyping

<table>
<thead>
<tr>
<th>Breeding objective (SD units)</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSex-NCr</td>
<td>ab</td>
<td>ce</td>
<td>cd</td>
<td>a</td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
</tr>
<tr>
<td>Sex-Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sex-Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex-NCr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sex-NCr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSex-Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSex-Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

August, 27th 2018
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

- Bars with different superscripts differ significantly (Tukey test)
- p-value < 0.05

Breeding objective (SD units)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSex-NCr</td>
<td>ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex-Cr</td>
<td>ce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex-NCr</td>
<td>cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSex-Cr</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

August, 27th 2018 EAAP ANNUAL MEETING
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Breeding objective (SD units)

P | P | P | P | G | G | G | G
NSex-NCr | Sex-Cr | Sex-NCr | NSex-Cr | NSex-NCr | Sex-Cr | Sex-NCr | NSex-Cr

Genotyping

August, 27th 2018
Simulation study - Results

Variation in \(\Delta G \) of breeding objective from year 0 to year 10

Breeding objective (SD units)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
</tr>
</tbody>
</table>

Conventional semen only

+ Genotype

August, 27th 2018 EAAP ANNUAL MEETING
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Breeding objective (SD units)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-Cr</td>
<td>NSex-Cr</td>
<td></td>
</tr>
</tbody>
</table>

Sexed semen and Crossbreeding

+ Genotype

August, 27th 2018

EAAP ANNUAL MEETING
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Breeding objective (SD units)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-Cr</td>
</tr>
</tbody>
</table>

- Sexed semen and no crossbreeding
- + Genotype

August, 27th 2018
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Conventional semen and Crossbreeding

+ Genotype

Breeding objective (SD units)

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>P</th>
<th>G</th>
<th>G</th>
<th>G</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-NCr</td>
<td>Sex-Cr</td>
<td>Sex-NCr</td>
<td>NSex-Cr</td>
<td>NSex-Cr</td>
</tr>
</tbody>
</table>

August, 27th 2018

EAAP ANNUAL MEETING
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Breeding objective (SD units)

- **P NSex-NCr**
- **P Sex-NCr**
- **G NSex-NCr**
- **G Sex-NCr**

Sexed semen ↑ genetic gain (+ 0.18 σ)
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Breeding objective (SD units)

- P NSex-NCr
- P Sex-NCr
- G NSex-NCr
- G Sex-NCr

Female genotyping ↑ genetic gain (+ 0.07 σ)
Simulation study - Results

Variation in ΔG of breeding objective from year 0 to year 10

Use of sexed semen and female genotyping ↑ genetic gain

August, 27th 2018
EAAP ANNUAL MEETING
Simulation study - Results

Variation in total products from year 0 to year 10

August, 27th 2018
EAAP ANNUAL MEETING
Simulation study - Results

Variation in total products from year 0 to year 10

August, 27th 2018
Variation in total products from year 0 to year 10

<table>
<thead>
<tr>
<th>Total products per cow (€)</th>
<th>P NSex-NCr</th>
<th>P Sex-Cr</th>
<th>P Sex-NCr</th>
<th>P NSex-Cr</th>
<th>G NSex-NCr</th>
<th>G Sex-Cr</th>
<th>G Sex-NCr</th>
<th>G NSex-Cr</th>
</tr>
</thead>
</table>
| Variation in total product is linked to animals sales

August, 27th 2018

EAAP ANNUAL MEETING
Simulation study - Results

Variation in total expenses from year 0 to year 10

Raising and reproduction costs increased a lot

August, 27th 2018

EAAP ANNUAL MEETING
Simulation study - Results

Variation in total expenses from year 0 to year 10

Raising and reproduction costs increased a lot

August, 27th 2018
EAAP ANNUAL MEETING
Simulation study - Results

Variation in net margin from year 0 to year 10

Always a gain in net margin
Take home messages

• Use of sexed semen and female genotyping → ↑ genetic gain
Take home messages

• Use of sexed semen and female genotyping \rightarrow ↑ genetic gain

• Benefits of “sexed semen only” strategy depend on the market
Take home messages

• Use of sexed semen and female genotyping \rightarrow \uparrow genetic gain

• Benefits of “sexed semen only” strategy depend on the market

• Long term sustainable strategy: “G – sexed – crossbreeding”:
 • increases genetic gain,
 • maintains the increase in net margin
 • is less sensitive to fluctuations of market conditions
Take home messages

• Use of sexed semen and female genotyping → ↑ genetic gain

• Benefits of “sexed semen only” strategy depend on the market

• Long term sustainable strategy: “G – sexed – crossbreeding”:
 • increases genetic gain,
 • maintains the increase in net margin
 • is less sensitive to fluctuations of market conditions

• Delay of several years before observing a return on investments
Take home messages

• Use of sexed semen and female genotyping → ↑ genetic gain

• Benefits of “sexed semen only” strategy depend on the market

• Long term sustainable strategy: “G – sexed – crossbreeding”:
 • increases genetic gain,
 • maintains the increase in net margin
 • is less sensitive to fluctuations of market conditions

• Delay of several years before observing a return on investments

Interest of combining genotyping with use of sexed semen