OPERATIONAL MEASURES OF EFFICIENCY: MAKE THEM MEASUREABLE ON LARGE SCALE

Session “What the hell is resilience and efficiency?”

Hélène Gilbert – Egbert F. Knol
OPERATIONAL MEASURES OF EFFICIENCY:
MAKE THEM MEASUREABLE ON LARGE SCALE

Session “What the hell is resilience and efficiency?”

Hélène Gilbert – Egbert F. Knol
Efficiency: what is the objective?

Pig Farm final product = meat
Consumer starting product = Meat?
Human edible proteins?
What is the farmer object?

The pig

Pig Farm final product = meat
What is the farmer object?
The pig, using sun to grow

Pig Farm final product = meat
What is the farmer object?
The pig, using sun to grow, raised from a litter

Pig Farm final product = meat
What is the farmer object?
The pig, using sun to grow, raised from a litter, born from a sow

Pig Farm final product = meat
What is the farmer object?
The pig, using sun to grow, raised from a litter, born from a sow, among multiple sows raised in a farm

Pig Farm final product = meat
What is the fuel?

Pig Farm final product = meat

= MJ DE
Kilo or energy or cost per kg gain

Which unit to consider?

<table>
<thead>
<tr>
<th>Diet ME (kcal/kg)</th>
<th>Diet CP (%)</th>
<th>49d body wt (g)</th>
<th>Feed intake 35-49d (g)</th>
<th>Feed:gain 35-49d</th>
<th>Energy efficiency (Mcal/kg gain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200</td>
<td>18</td>
<td>2950</td>
<td>2580</td>
<td>2.34</td>
<td>7.43</td>
</tr>
<tr>
<td>2900</td>
<td>16</td>
<td>2920</td>
<td>2760</td>
<td>2.49</td>
<td>7.19</td>
</tr>
<tr>
<td>2600</td>
<td>14</td>
<td>2880</td>
<td>2900</td>
<td>2.72</td>
<td>6.97</td>
</tr>
<tr>
<td>2300</td>
<td>13</td>
<td>2910</td>
<td>3270</td>
<td>2.99</td>
<td>6.70</td>
</tr>
<tr>
<td>1900</td>
<td>11</td>
<td>2910</td>
<td>3670</td>
<td>3.31</td>
<td>6.37</td>
</tr>
<tr>
<td>1600</td>
<td>9</td>
<td>2890</td>
<td>4300</td>
<td>4.01</td>
<td>6.41</td>
</tr>
</tbody>
</table>

Table 1. Effect of diet dilution from 35-49d of age on broiler performance.

Adapted from Leeson et al. (1996)
Is efficiency only energy?

Which unit to consider?

= MJ DE

What about Protein efficiency?
AA?
Minerals?
Vitamins?
Farmer approach

Total feed efficiency =

Pork farm out
Feed farm in
Total feed efficiency (TFE)
TFE TOPIGS Research farm Beilen

Total Feed Efficiency over the past 10 years

\[y = -0.02x + 42.64 \]
Efficiency of the production system

~ Knol 2010
Losses

Efficiency of the production system

~ Knol 2010
Losses
Efficiency of the production system

→ Need models and measures
Model: define

Total feed intake

Gestation
- Maintenance
- Reproduction
- Intra-uterine fluids
 - Placenta
 - Foetus
 - Mammary gland
 - Body protein
 - Body fat

Lactation
- Maternal gain
- Physical activity
- Milk
- Mammary gland growth
- Mobilized tissue

Grower-finisher
- Maintenance
- Protein deposition
- Fat deposition
- Residual feed intake
Model: quantify

Total feed intake

- Gestation
 - Maintenance
 - Reproduction
 - Maternal gain
 - Physical activity
- Lactation
 - Maintenance
 - Milk
 - Mammary gland growth
 - Mobilized tissue
- Grower-finisher
 - Maintenance
 - Protein deposition
 - Fat deposition
 - Residual feed intake

- 70%
- 6%
- 18%
- 6%
- 29%
- 99%
- 5%
- -32%
- 40%
- 29%
- 31%
- 0
Model: quantify

Total feed intake

- Gestation
 - Maintenance
 - Reproduction
 - Maternal gain
 - Physical activity

- Lactation
 - Milk
 - Mammary gland growth
 - Mobilized tissue

- Grower-finisher
 - Maintenance
 - Protein deposition
 - Fat deposition
 - Residual feed intake

- 339 kg
 - 70%
 - 6%
 - 18%
 - 6%

- 145 kg
 - 29%
 - 99%
 - 5%
 - -32%

- 3119 kg
 - 40%
 - 29%
 - 31%
 - 0
Model: quantify

<table>
<thead>
<tr>
<th></th>
<th>Model Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed intake during gestation (kg)</td>
<td>339</td>
</tr>
<tr>
<td>Feed intake during lactation (kg)</td>
<td>145</td>
</tr>
<tr>
<td>Feed intake during nursery (kg)</td>
<td></td>
</tr>
<tr>
<td>Feed intake during growing-finishing (kg)</td>
<td></td>
</tr>
<tr>
<td>Sum of FI of grower-finishers (kg)</td>
<td>3119</td>
</tr>
<tr>
<td>Total feed intake per litter (kg)</td>
<td>3602</td>
</tr>
<tr>
<td>No animals slaughtered per litter</td>
<td>12.6</td>
</tr>
<tr>
<td>Slaughter weight (kg)</td>
<td>116.3</td>
</tr>
<tr>
<td>Live weight sold per litter (kg)</td>
<td>1463</td>
</tr>
<tr>
<td>TFE</td>
<td>2.461</td>
</tr>
</tbody>
</table>
Model: validate

<table>
<thead>
<tr>
<th>Model Prediction</th>
<th>Observed in Beilen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed intake during gestation (kg)</td>
<td>339</td>
</tr>
<tr>
<td>Feed intake during lactation (kg)</td>
<td>145</td>
</tr>
<tr>
<td>Feed intake during nursery (kg)</td>
<td>28</td>
</tr>
<tr>
<td>Feed intake during growing-finishing (kg)</td>
<td>218</td>
</tr>
<tr>
<td>Sum of FI of grower-finishers (kg)</td>
<td>3119</td>
</tr>
<tr>
<td>Total feed intake per litter (kg)</td>
<td>3602</td>
</tr>
<tr>
<td>No animals slaughtered per litter</td>
<td>12.6</td>
</tr>
<tr>
<td>Slaughter weight (kg)</td>
<td>116.3</td>
</tr>
<tr>
<td>Live weight sold per litter (kg)</td>
<td>1463</td>
</tr>
<tr>
<td>TFE</td>
<td>2.461</td>
</tr>
</tbody>
</table>

➔ Overestimation model less than 0.5%
Model: evaluate, test sensitivity

<table>
<thead>
<tr>
<th>Trait Description</th>
<th>Normal Value</th>
<th>+1 std dev</th>
<th>TFE</th>
<th>change in TFE</th>
<th>%</th>
<th>abs%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, 20 traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 HGP-BF (mm)</td>
<td>15.3</td>
<td>18.3</td>
<td>2.583</td>
<td>0.121</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>2 Average daily gain (g/d)</td>
<td>730</td>
<td>807</td>
<td>2.380</td>
<td>-0.082</td>
<td>-3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>3 Litter size at farrowing</td>
<td>15.1</td>
<td>18.2</td>
<td>2.406</td>
<td>-0.056</td>
<td>-2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>4 Litter mortality during lactation %</td>
<td>10%</td>
<td>22%</td>
<td>2.497</td>
<td>0.036</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>5 Body weight at start lactation (kg)</td>
<td>219</td>
<td>253</td>
<td>2.497</td>
<td>0.035</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>6 Slaughter weight (kg)</td>
<td>116.3</td>
<td>123.8</td>
<td>2.494</td>
<td>0.033</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Killing out %</td>
<td>78%</td>
<td>80%</td>
<td>2.462</td>
<td>-0.00013</td>
<td>-0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>20 Number of mammary glands</td>
<td>15.1</td>
<td>16.1</td>
<td>2.462</td>
<td>0.00001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Need models and measures
Measures

Animal(s)
Measures
Animal(s)
Measures or proxy?

Animal(s)

Google scholar: feed efficiency and

Genomic

Biomarkers

Microbiota / Metagenomics

0 10000 20000 30000 40000
Measures or proxy?
Thousands of biomarkers discovered, how many used in practice?
The biomarker case

From discovery to use on-farm

Lack of generality in the discovery process?
Lack of decision tools?
Difficulty to quantify potential side effects?

➔ Should/Can we discover on farm?
Measures
Animal(s) AND environment
Measures and records
Animal(s) AND environments

Time \Rightarrow dynamics of the responses

Huynh Tran et al, 2017
Measures and records
Animal(s) AND environments

Group composition ➔ variability of the group
➔ competition / stimulation interactions

Huynh Tran et al, 2017
Measures and records
Animal(s) AND environments

Treatments / events / changes of environment and management...

Dynamics + individual variability + external events
→ Resilience!

Taghipoor et al, 2017
Why measuring?

❖ Detect health issues
❖ Feed according to the requirements – Precision feeding
❖ Improve the population performance – in multiple E decision tools needed
Message from pig breeders

❖ Choose your objective: precision management, health improvement, selection?
❖ Choose your unit of:
 ➢ Interest: farm, pen, or animal (suggestion: farm)
 ➢ Input: MJ/Kcal; ME/DE; feed/euros/sun
 ➢ Output: kg milk, kg fat+protein

❖ Choose your measurements, plan the validation and decision tools (biomarkers, image analyses, microbiome…)
 ❖ Choose your efficiency
❖ Think dynamics and groups
 ❖ Choose your resilience
Message from pig breeders

- Find your system losses: management + animal
- Quantify maintenance requirements and keep them under control
- Quantify the relevance of the production parameters (and cull the lowest 5%, regardless)
- Record, record, record