Towards field specific phosphate application norms with machine learning

August 28th, 2018 – EAAP 2018, Dubrovnik

Erwin Mollenhorst, Michel de Haan, Jouke Oenema, Rita Hoving, Roel Veerkamp, Claudia Kamphuis
Nutrient cycle

Animal

Crops

Balance

Manure

Field
Current situation

Fixed phosphate application norms for crops / grassland
- 3 classes, based on P status of field
- For crops: 50 / 60 / 75 kg P_2O_5 (app. 22 / 26 / 33 kg P)

However, differences in P yield dependent on, e.g.:
- Field
- Crop
- Weather
-
Goal

To predict future maize yields based on farm data and open source weather data
Dataset from “KTC De Marke”

162 records of maize yields
24 different fields
Years 1996 – 2014
On average 7 times maize

Information on:
- N and P input and output
- Irrigation, P status of field
- Weather data (own weather station and open source)
Predicted variable

Maize yield, expressed in kg P per ha per year
Average yield: 22 kg P (13 - 36)

Generalized boosted regression models

gbm package in R
Validation

70% train, 30% test, 1 year validation

Final performance: 5 validation years combined
Performance criteria

Ideal situation: $y = x$
Performance criteria

RMSE - root mean squared error

Deviation from $y=x$
Performance criteria

RMSE root mean squared error

Deviation from $y=x$

r relative to linear fit

How much variation is explained (trend)
Pyield 2010 – Observed vs predicted

Train

Test

Validation

RMSE = 0
Rsq = 1
r = 1

RMSE = 2.74
Rsq = 0.55
r = 0.76

RMSE = 3.34
Rsq = -5.1
r = 0.33
Pyield 2011 – Observed vs predicted

Train

Test

Validation

RMSE = 0.01
Rsq = 1
r = 1

RMSE = 2.52
Rsq = 0.67
r = 0.84

RMSE = 3.86
Rsq = 0.07
r = 0.83
Norm vs model

Norm (50 kg $P_2O_5 = 22$ kg P)

Predicted (validation sets)

RMSE = 4.86

RMSE = 4.54

$r = 0.4$
Most important variables

Cropping scheme
- Crop in previous year (grass/maize)

Soil status
- Phosphate status field

Weather
- Maximum temperature in July

Yield history
- Average Pyield maize same field past 7 yrs
Conclusions

Machine learning is marginally better in predicting P yield than a generic norm (similar RMSE)

Furthermore, a trend could be shown in P yield ($r = 0.40$)

Multiple data sources are utilized

To be further explored, e.g., by including grassland
Acknowledgements

KTC De Marke

Gerjan Hilhorst

This project was part of
KB-27-01-0013