Discover potential regulatory mechanisms involved in rumen functional changes under high grain diet

L. L. Guan1, K. Zhao1,2, Y. H. Chen1, G. B. Penner3

1University of Alberta, Canada; 2Shanxi Normal University, China; 3University of Saskatchewan, Canada

EAAP 69th Annual Meeting, Dubrovnik, Croatia
Functional Genomics and Microbiology at University of Alberta

Molecular profiling of microbial community
- Metagenomics, metatranscriptomics of gut microbiome
- Host transcriptome and microRNA profiling
- Metabolomics

- Rumen
 - Feed efficiency
 - Methane emission
 - Rumen Acidosis

- Gut
 - Host innate Immunity
 - Barrier function

https://www.cattleomics.com/
SCFA absorption accounted for up to 53% of the ruminal buffering capacity.
Distinct individual variation – adapt to HGD

High grain diet (HGD)

Higher ruminal pH

Lower ruminal pH

(Bevans et al., 2005; Mahammed et al., 2012; Penner et al., 2009)
Hypothesis and objectives

• Hypothesis
 – The HGD change gene expression at whole transcriptome level
 – Individual variation during HGD adaptation can be explained by transcriptome variation of ruminal epithelium

• Objectives
 – To characterize transcriptome of ruminal epithelia during HGD transition using RNA-seq
 – To compare ruminal epithelia transcriptomes focusing on the difference of individual adaptation
Experimental design

Rumen papillae and RNA extraction (n = 45)

Transcriptome profiles

<table>
<thead>
<tr>
<th>d3 (n = 15)</th>
<th>d15 (n = 15)</th>
<th>d27 (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3% grain</td>
<td>40% grain</td>
<td>85% grain</td>
</tr>
<tr>
<td>(d 1-4)</td>
<td>(d 5-8)</td>
<td>(d 17-20)</td>
</tr>
<tr>
<td>60% grain</td>
<td>75% grain</td>
<td>92% grain</td>
</tr>
<tr>
<td>(d 9-12)</td>
<td>(d 13-16)</td>
<td>(d 21-28)</td>
</tr>
<tr>
<td>75% grain</td>
<td>85% grain</td>
<td></td>
</tr>
<tr>
<td>(d 13-16)</td>
<td>(d 17-20)</td>
<td></td>
</tr>
<tr>
<td>85% grain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d 17-20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92% grain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d 21-28)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RNA sequencing

Illumina HiSeq 2000

Differentially expressed (DE) genes

Tophat2, HT-seq

Differentially expressed (DE) genes

EdgeR

Functional analysis

Potential regulatory mechanisms of individual variation during HGD adaptation
Transcriptome profiling under different grain diets

PC1 13.77%

PC2 12.15%

-100 -50 0 50 100

-100 -50 0 50 100 150

PC1 (13.77%)
PC2 (12.15%)

3% grain
75% grain
92% grain
The genes with reads per million (RPM) > 1 in 15 out of 15 cattle in at least 1 diet
Different pH trend during dietary adaptation
Acidosis index showed similar result with ruminal pH.
More DE genes were found in UG heifers

DG (92% vs. 75%)

- 67 genes
 - 22-up regulated
 - 45-down regulated

UG (92% vs. 75%)

- 285 genes
 - 122-up regulated
 - 163-down regulated

(RPM >1 in 5 out of 5 cattle in at least 1 diet, FC >1.5 or < -1.5 and FDR <0.05)
Intracellular pH was differentially regulated in DG and UG

<table>
<thead>
<tr>
<th></th>
<th>DG-75%</th>
<th>DG-92%</th>
<th>UG-75%</th>
<th>UG-92%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHE3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHE6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHE8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHE9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCT4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC26A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC26A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC26A11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP1A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP1B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP1B3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

92% vs. 75%

- **DG**
- **UG**

- **Na⁺/H⁺ exchanger**
- **Na⁺/K⁺ exchanger**
- **Anion exchanger**

(T-test, * p < 0.1, ** p < 0.05, and *** p < 0.001)
Lipid metabolism was differently regulated in DG and UG

Top two functions of Up-regulated genes in DG

<table>
<thead>
<tr>
<th>Diseases or Functions Annotation</th>
<th>P-Value</th>
<th>Z-score</th>
<th>Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-regulated genes (n = 22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration of lipid</td>
<td>9.29E-03</td>
<td>1.94</td>
<td>6</td>
</tr>
<tr>
<td>Concentration of triacylglycerol</td>
<td>9.29E-03</td>
<td>1.70</td>
<td>4</td>
</tr>
</tbody>
</table>

Top two functions of Up-regulated genes in UG

<table>
<thead>
<tr>
<th>Diseases or Functions Annotation</th>
<th>P-Value</th>
<th>Z-score</th>
<th>Molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-regulated genes (n = 122)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage of lipid</td>
<td>3.85E-03</td>
<td>-2.00</td>
<td>5</td>
</tr>
<tr>
<td>Oxidation of lipid</td>
<td>1.09E-02</td>
<td>2.00</td>
<td>7</td>
</tr>
</tbody>
</table>
Expression of FABP4 increased in DG, FABP5 decreased in UG

FABPs are lipid chaperone protein, which associated with lipogenesis and fat deposition

Long chain fatty acid transporter

Cholesterol transporter

(T-test, * p < 0.1, ** p < 0.05, and *** p < 0.001)

(Specht et al., 1996; Hertzel et al., 2006; Michal et al., 2006)
Expression of ketogenesis and cholesterol synthesis related genes was increased in DG but deceased in UG

(T-test, * p < 0.1, ** p < 0.05, and *** p < 0.001)
Summary

High grain diet (72% to 89% grain) → Cellular damage

Down group:
- Innate immunity ↓
- Inhibited defense
- Cholesterol ↑
- Cholesterol accumulate
- Cellular stability/homeostasis
- Normal function of epithelia
- Lumen pH ↓

Up group:
- Cell cycle arrest ↑
- Repair
- Xenobiotic metabolism ↑
- Elimination of toxins
- Cellular stability/homeostasis
- Normal function of epithelia
- pH ↑
Summary

- Dietary grain concentration affected gene expression of ruminal epithelium at whole transcriptome level
- Transcriptional regulation of lipid transport, fatty acid metabolism, and intracellular homeostasis might be the molecular mechanism accounting for individual variation during the diet transition to a high grain diet
- The identified genes could be potential gene markers for selecting cattle with maintained ruminal pH through a diet transition to a high grain diet
Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle

K. Zhao1,2, Y. H. Chen1, G. B. Penner3, M. Oba1 and L. L. Guan1*
Acknowledgement

All the co-authors

Dr. K. Zhao (Shanxi Normal University)
Dr. M. Oba (University of Alberta)
Dr. G. Penner (University of Saskatchewan)

All the members in my lab