Multi-omics data integration approach for resilience of dairy cattle to heat stress

H. HAMMAMI1,3, F.G. COLINET1, C. BASTIN2, S. VANDERICK1, A. MINEUR1, S. NADERI1, R.R MOTA1, N. GENGLER1

1 Gembloux Agro-Bio Tech, ULiège, B-5030 Gembloux, Belgium
2 Walloon Breeding Association, awé, B-5090 Ciney, Belgium
3 hedi.hammami@uliege.be
Heat stress (HS): Context

➢ Economic loss

2003
USA

2013 & 2014
France & Switzerland

2018
Ireland

Average losses due to heat stress:
- Without any heat abatement: $167 per cow per year
- With optimal heat abatement system: $100 per cow per year

St Pierre et al. (2003)

Milk loss: 2.73 kg / day

Heatwave costing for dairy farmers 1,750 € / week

➢ Heat wave of July 2018

167$/cow

37°C

FURNACE FRIDAY!

THE WORLD'S ON FIRE!
Breeding for resilience to HS: Challenges

➢ Biological mechanisms
 • Complex interactions

➢ Phenotyping strategies
 • mostly reductionist approaches

Associating multiple-omics data ➔ better view of resilience to HS

Renaudeau et al. (2015)
Objectives

- Phenomics
- Climate conditions
- Holistic Approach
- More insights on biological background of resilience to HS and GxE

- Genetics
- Genomics
- Milk biomarkers
- Pedigree
- SNP’s

Objectives

EAAP 2018 MEETING DUBROVNIK

4
Data & models

➢ Data
 • 62,744 TD records
 • 3 days lag THI test-date
 • 8,485 third-lactation cows

➢ Multivariate reaction norm model
 ✓ 3 lactation stage

Production
 ▪ Milk, Fat, Prot yields

Fatty acids
 ▪ C4:0, C18:1 cis-9, UFA, MUFA, LCFA

Milk metabolites
 ▪ Acetone and BHB

Intercept \(a_0 \)

Slope \(a_{hs} \)

THI

Ratio of Slope-Intercept variances

Limited sensitivity to HS

Small

Large

High sensitivity to HS
Ratios of slope-intercept genetic variances

HS: Highly affecting cows in midlactation (Aguilar et al, 2009; Brügemann et al. 2011)

Changes in blood parameters related to energy balance and enzyme activity (Abeni et al. 2007)
Resilience to HS: GWAS

Solutions:
- $EBV_{\text{intercept}}$
- EBV_{slope}

Genotypes:
4077 animals (50 K SNP)
20943 animals with pedigree

Gene mapping
ORG.MESH.BTA.DB

SNP effects
Milk yield: Intercept

Early

Middle

Late

DGAT1

Number of genes shared in all periods vs specific lactation stage genes

- DGAT1 encoding for milk yield & composition

- Number of genes shared in all periods
- Early-specific
- Middle-specific
- Late-specific

87

2 2 3

Shared in all periods
Early-specific
Middle-specific
Late-specific
Milk yield: Slope

Cellular thermotolerance and HS response

Number of genes shared in all periods vs specific lactation stage genes

Early-specific
Middle-specific
Late-specific

Shared in all periods

Early
Middle
Late

HSP90A
HSF1

Protein involved in the mechanism of response to HS

Cellular thermotolerance and HS response
C18:1cis9: Intercept

Number of genes shared in all periods vs specific lactation stage genes

- **Early**
 - STAT1: Regulating the transcription of milk protein synthesis
 - Chromosome 30
 - Early-specific

- **Middle**
 - STAT1: Lactogenesis & Lipid synthesis
 - Chromosome 8
 - Middle-specific

- **Late**
 - STAT1
 - Chromosome 30
 - Late-specific

EAAP 2018 MEETING DUBROVNIK 10
C18:1cis9: Slope

IGF1

GHR

Metabolism of lipids

Molecular markers

fertility

Chromosome

Number of genes shared in all periods vs specific lactation stage genes

- Shared in all periods
- Early-specific
- Middle-specific
- Late-specific

Early

Middle

Late

EAAP 2018 MEETING DUBROVNIK
Take home messages

- Milk production traits: Middle lactation vs Milk biomarkers: Early

- Changes in milk-based biomarkers under high THI are more affordable to better elucidate pathways

- Ongoing investigation using the holistic approach integrating phenomics (milk-biomarkers) and genomics is promising
 - to be consolidated for both case study traits
 - benefit from current pipelines to go one with the rest of traits
Acknowledgements

Support of the Service Public de Wallonie (SPW – DGO3, Belgium)

Walloon Breeding Association

CECI Consortium for computational resources

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation.