Assessment of natural vs mechanical farm ventilation using daily registered data in fattening pigs

Chantziaras I.¹, De Meyer D.², Klinkenberg M.¹, Van Limbergen T.¹, Vrielinck L.², Pineiro C., Jimenez M., Dewulf J.¹, Kyriazakis I., Maes D.¹

¹Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
²Vedanko bvba, 8750, Wingene, Belgium
³PigCHAMP Pro Europa, Segovia, Spain
Introduction

- Intensive pig farming
 - Driven by production goals
 - Challenges?
Introduction

- Respiratory diseases
 - A multifactorial problem!

Respiratory Diseases

Environment
- Temperature
- Humidity
- CO₂, NH₄

Management / Housing
- Facilities (e.g. heating, ventilation)
- Genetics
- Biosecurity
- Nutrition
Introduction

▪ Study focus
Study aim

- To assess the effects of ventilation type (mechanical vs natural) on
 - Respiratory disease: Use of daily recorded data!
 - Welfare: Use of a welfare assessment score!
Study set up

- Use of a farrow-to-finish commercial farm in West Flanders, Belgium

- 3 successive production batches (from 08/2015 to 12/2016)
Measuring data

- Environmental data

- Respiratory health data

- Welfare data
Farm

- Comparing 2 fattening units:
 - Each unit: +/- 440 pigs
 - Each pen: +/- 15 pigs
 - IDENTICAL: Genetics, biosecurity, nutrition, heating and floor type, vaccinations, anthelminthic treatments, stocking density, health management ...
Farm

- **Unit 1**
 - **mechanical ventilation**
 - **Air inlet:**
 - valves on both side-walls of the building
 - **Air outlet:**
 - Ventilators on the front and the back side of the building

- **Unit 2**
 - **natural ventilation**
 - **Air inlet:**
 - valves on both side-walls of the building
 - **Air outlet:**
 - Passive ceiling ventilation
 - *via* ridge (roof)
Results

- Environmental conditions (indoor climate)
Results

- **Environmental conditions (indoor climate)**

 Median difference of **3.9 °C, 239 ppm CO2 and 4 ppm NH3** (p<0.001)

<table>
<thead>
<tr>
<th></th>
<th>Temperature °C</th>
<th>CO₂ (ppm)</th>
<th>NH₃ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical ventilation</td>
<td>23.3</td>
<td>1254</td>
<td>10</td>
</tr>
<tr>
<td>Natural ventilation</td>
<td>26.9</td>
<td>1683</td>
<td>14</td>
</tr>
</tbody>
</table>
Results

- Respiratory disease
 - A median difference of 2 cases, P<0.001

<table>
<thead>
<tr>
<th></th>
<th>Mechanical ventilation</th>
<th>Natural ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>1 case</td>
<td>5 cases</td>
</tr>
</tbody>
</table>
Results

- Respiratory disease
 - zero-altered neg. binomial regression

<table>
<thead>
<tr>
<th>Natural ventilation</th>
<th>Odds ratio</th>
<th>(95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count model</td>
<td>1.51</td>
<td>(1.35-1.68)</td>
</tr>
<tr>
<td>Zero-hurdle model</td>
<td>4.15</td>
<td>(2.89-5.96)</td>
</tr>
</tbody>
</table>

Ref. : when compared with mechanical ventilation accounted also for batch, season and age

Frequency plot of point prevalence of respiratory disease

Observed daily point prevalence during the last 3 batches
Results

- Welfare assessments

<table>
<thead>
<tr>
<th>Ventilation</th>
<th>first assessment</th>
<th>last assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
</tr>
<tr>
<td>Mechanical</td>
<td>5.33</td>
<td>5.00</td>
</tr>
<tr>
<td>Natural</td>
<td>10.67</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Best welfare score is zero and the worst score is 28.

1st welfare assessment:
2-3 weeks after start of fattening period

2nd assessment: 3-4 weeks before end of fattening period
Conclusions

- Mechanical ventilation is linked with
 - favorable environmental conditions
 - lower prevalence of respiratory disease
 - better welfare conditions
Thank you for your attention!

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613574.