Producing lambs while limiting concentrates in various pedoclimatic contexts: which performances?

M. Benoit¹, B. Dumont, R. Sabatier, J. Lasseur (INRA) Ph. Creighton (Teagasc)

¹ INRA UMRH Clermont-Ferrand, France
Background

Decrease in European sheep production
- Profitability / Production cost, in particular feed and equipments
- Workload

Global stakes
- Livestock contribution to Climate change
- Energy consumption
- Feed-food competition

Great variability
- In farm performances (technical and economic)
- Pedo-climat contexts
- Breeds
Aims

In a large diversity of context

For optimized sheep farming systems (output/input)

• What strategies?
• What results? Technical, economic, environmental, feed-food
• What consequences?
Choice of 5 farming systems

Ewe productivity
Concentrate use: **Major impact**

1482 years- farms (1987-2016) - 118 farms (12 years in average)

Uplands
- Kg Conc./Ewe
- Ewe productivity %

Lowlands
- Kg Conc./Ewe
- Ewe productivity %

1482 years- farms (1987-2016) - 118 farms (12 years in average)

Marc Benoit – Efficient sheep farming systems
5 contrasting farming systems 1/2

- **Irel**: Belclare
- **Graz**: Mouton Vendéen, Texel
- **OF**: Limousine
- **DT**: Mourerous
- **3x2**: Rava x Ile de France
Simulation tool and performance indicators

OSTRAL (simulation tool)

- **Standardisation**
 - Economic situation (2015)
 - Adequation of equipments

- **Extrapolation for Irel. System**
 (60 → 420 ewes)

- **Indicators calculation**

[Technical indicators (flock perf.; feeding; ...)]

- **Feed/food competition**
 (protein) (*Ertl et al 2015, Wilkinson 2011...*)

- **Economics**
 - Net Income /worker
 - Added value /worker
 - Net Income/assets

- **Environment**
 - N balance
 - Gross and Net GHG emissions/kg carc (LCA)
 - MJ/kg carc (LCA)

- **Market adequacy**
 - Lambs selling Regularity
 - Lambs Conformation
Main characteristics and performances

<table>
<thead>
<tr>
<th></th>
<th>Irel</th>
<th>Graz</th>
<th>3x2</th>
<th>OF</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ewe (>6 mths)</td>
<td>420</td>
<td>541</td>
<td>470</td>
<td>405</td>
<td>2105</td>
</tr>
<tr>
<td>Stocking rate (ewe/ha Fodder Area)</td>
<td>11.4</td>
<td>6.6</td>
<td>8.7</td>
<td>4.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Irel</th>
<th>Graz</th>
<th>3x2</th>
<th>OF</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewe productivity (+6mths) (%)</td>
<td>154</td>
<td>133</td>
<td>166</td>
<td>132</td>
<td>82</td>
</tr>
<tr>
<td>Ewe mortality (%)</td>
<td>8.3</td>
<td>3.3</td>
<td>5.8</td>
<td>4.8</td>
<td>18.9</td>
</tr>
<tr>
<td>Concentrates (kg.kg carc⁻¹)</td>
<td>1.22</td>
<td>1.55</td>
<td>5.24</td>
<td>3.41</td>
<td>0.00</td>
</tr>
<tr>
<td>Fodder self-sufficiency (%)</td>
<td>95</td>
<td>94</td>
<td>78</td>
<td>88</td>
<td>100</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Added value (€.W⁻¹)</td>
<td>21400</td>
<td>31700</td>
<td>19800</td>
<td>22500</td>
<td>31900</td>
</tr>
<tr>
<td>Gross GHG emissions (EqCO2.kg carc⁻¹)</td>
<td>21.7</td>
<td>18.3</td>
<td>22.5</td>
<td>24.8</td>
<td>28.6</td>
</tr>
<tr>
<td>Net GHG emissions (EqCO2.kg carc⁻¹)</td>
<td>19.2</td>
<td>13.7</td>
<td>16.6</td>
<td>8.5</td>
<td>-130.0</td>
</tr>
<tr>
<td>Total MJ Non Renew. Energy (MJ.kg carc⁻¹)</td>
<td>50.6</td>
<td>31.4</td>
<td>50.9</td>
<td>47.6</td>
<td>22.7</td>
</tr>
<tr>
<td>Effic. conversion of edible proteins (%)</td>
<td>158</td>
<td>125</td>
<td>33</td>
<td>51</td>
<td>∞</td>
</tr>
</tbody>
</table>
Synthesis of overall performance

Marc Benoit – Efficient sheep farming systems
Discussion

• Fodder self-sufficiency
 → **high seasonality** of reproduc. & fattening

• Harsh environment and resources
 → rustic breed → **low lamb conformation**

- Cross organisation between territories? (regularity)
- Consumers education? ...in relation with labelling, certification and specificities
- Specific markets/consumers (ex: DT lambs for Muslims)
Conclusion

Very high use of fodder resources
// Farm sustainability

Sheep industry standards

Other services and impacts must be studied
Socio-economics, patrimonial aspects, nutritional quality, biodiversity, landscape

→ Use of Conceptual framework
(Dumont et al, Animal 2018)
Thank you for your attention
5 contrasting farming systems 2/2

<table>
<thead>
<tr>
<th></th>
<th>Irel</th>
<th>Graz</th>
<th>3x2</th>
<th>OF</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>Oceanic climate</td>
<td>Plain Temperate</td>
<td>Mountain Continental</td>
<td>Mountain Continental</td>
<td>Mountain /pastoral Mediterranean</td>
</tr>
<tr>
<td>Grass-based Intensive pastures (experimental device)</td>
<td>Grass-based system</td>
<td>Intens. Repro. Syst High ewe product</td>
<td>Grass-based Organic farming</td>
<td>Double transhum. 0 → 2500m alt. Harsh conditions</td>
<td></td>
</tr>
<tr>
<td>One lambing period (end winter)</td>
<td>One lambing period ; grass-fattened lambs No N fertilis.</td>
<td>3 lambing period Lambs indoors</td>
<td>2/3 spring lambings (grass- fattened lambs); 1/3 in autumn</td>
<td>Two lambing periods (March - October)</td>
<td>No concentrate</td>
</tr>
<tr>
<td>High meat and N/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main characteristics and performances

<table>
<thead>
<tr>
<th></th>
<th>Irel</th>
<th>Graz</th>
<th>3x2</th>
<th>OF</th>
<th>DT</th>
<th>Average (High lev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added value (€.W⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19900</td>
</tr>
<tr>
<td></td>
<td>21400</td>
<td>31700</td>
<td>19800</td>
<td>22500</td>
<td>31900</td>
<td></td>
</tr>
<tr>
<td>Gross GHG emissions (EqCO₂.kg carc⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>18.3</td>
<td>22.5</td>
<td>24.8</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>Net GHG emissions (EqCO₂.kg carc⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>13.7</td>
<td>16.6</td>
<td>8.5</td>
<td>-130.0</td>
<td></td>
</tr>
<tr>
<td>Total MJ Non Renew. Energy (MJ.kg carc⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>50.6</td>
<td>31.4</td>
<td>50.9</td>
<td>47.6</td>
<td>22.7</td>
<td></td>
</tr>
<tr>
<td>Effic. conversion of edible proteins (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 ??</td>
</tr>
<tr>
<td></td>
<td>158</td>
<td>125</td>
<td>33</td>
<td>51</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

Irel

Total Agricultural Area (ha)	36.8					110
Stocking rate (ewe/ha Fodder Area)	11.4	6.6	8.7	4.4	0.5	5.3
No ewe (>6 mths)	420	541	470	405	2105	556
Work productivity (eq.Livestock Unit.W⁻¹)	66.3	54.6	46.0	59.7	72.5	61.5

Graz

Ewe productivity (+6mths) (%)	154	133	166	132	82	126
Ewe mortality (%)	8.3	3.3	5.8	4.8	18.9	6.3
Concentrates (kg.kg carc⁻¹)	1.22	1.55	5.24	3.41	0.00	7.5
Fodder self-sufficiency (%)	95	94	78	88	100	71

3x2

Total Agricultural Area (ha)	81.9					
Stocking rate (ewe/ha Fodder Area)	6.6	8.7	4.4	0.5		
No ewe (>6 mths)	541	470	405	2105		
Work productivity (eq.Livestock Unit.W⁻¹)	54.6	46.0	59.7	72.5		

OF

Total Agricultural Area (ha)	53.9					
Stocking rate (ewe/ha Fodder Area)	8.7	4.4	0.5			
No ewe (>6 mths)	470	405	2105			
Work productivity (eq.Livestock Unit.W⁻¹)	46.0	59.7	72.5			

DT

Total Agricultural Area (ha)	91.9					
Stocking rate (ewe/ha Fodder Area)	4.4	0.5				
No ewe (>6 mths)	405	2105				
Work productivity (eq.Livestock Unit.W⁻¹)	59.7	72.5				
Stakes representation

Majority of French sheep farming systems

Grass potential

Grass and conformed breeds

Rustic breeds

Fodder self-sufficiency

Sheep industry standards

Grass potential (quality-duration)

Farms economic profitability

Impacts of Climatic hazards

Market
Conf. Regul
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-