IMPROVED CATTLE GROWTH BY METHIONINE-BALANCED DIETS DOES NOT RESULT FROM LOWER PROTEIN DEGRADATION

G. Cantalapiedra-Hijar¹, L. Bahloul², C. Chantelauze¹, V. Largeau¹, N. Khodorova³, H. Fouillet³, I. Ortigues-Marty¹

¹ INRA-UMRH (FR), ² ADISSEO (FR), ³ INRA-AgroParisTech (FR)
INTRODUCTION

• Improving N use efficiency (NUE) is currently an important issue in animal production

• From a metabolic point of view both the amount and nature of protein may impact NUE

• The dietary AA profile should be formulated according to animal requirements

 • Methionine is believed to be the first limiting AA in growing cattle fed forage-diets
 (*Titgemeyer and Merche, 1990*)

 • Diets well balanced for Met improve performances of growing beef cattle
 (*Veira et al., 1991; Bahloul et al., 2018*)

 • However, controversy exists about the metabolic pathways involved in this improvement
PROTEIN TURNOVER

IF THIS AMINO ACID LACKS:
1) PROTEIN SYNTHESIS MAY BE REDUCED
2) PROTEIN DEGRADATION MAY INCREASE

EXAMPLE OF PROTEIN TURNOVER
(Lobley, 2003)
• Protein intake = 1500 g/d
• Protein synthesis = 3000 g/d
• Protein degradation = 2750 g/d
• Protein gain = 250 g/d
PROTEIN TURNOVER: H1

EXAMPLE OF PROTEIN TURNOVER (Lobley, 2003)

- Protein intake = 1500 g/d
- Protein synthesis = 3000 g/d
- Protein degradation = 2750 g/d
- Protein gain = 250 g/d

Salter et al., 1990; Wessels et al., 1997; Saggau et al., 2000; Ren et al., 2007
Robinson et al., 2016
PROTEIN TURNOVER: H2

EXAMPLE OF PROTEIN TURNOVER (Lobley, 2003)

- Protein intake = 1500 g/d
- Protein synthesis = 3000 g/d
- Protein degradation = 2750 g/d
- Protein gain = 250 g/d

Nieto et al., 1994; Tesseraud et al., 1996
De la Higuera et al., 1998; Schadereit et al., 1999
Löhrke et al., 2001

IF THIS AMINO ACID IS SUPPLEMENTED
THE PROTEIN DEPOSITION MAY INCREASE THROUGH:

Nieto et al., 1994; Tesseraud et al., 1996
De la Higuera et al., 1998; Schadereit et al., 1999
Löhrke et al., 2001
Mechanisms responsible for the effect of Met (synthesis vs degradation) are not elucidated.

Available studies:

✓ monogastrics only (pigs, broilers, rats, fish)
✓ measurement of protein synthesis using a reference method (infusion or flooding dose of a labelled amino acid)
✓ but no measurement of protein degradation (→ calculated).

OBJECTIVE

To analyse the whole-body protein turnover rate of fattening young bulls fed diets balanced or unbalanced for methionine, at two dietary levels of metabolizable protein, using a new methodology to quantively assess protein degradation rate in vivo.
MATERIAL AND METHODS

- 36 Charolais young bulls (320 kg BW and 266 d old on average)
- 4 experimental diets, all based on grass silage (60%) and concentrate (40%)

2 x 2 Factorial design
[Normal vs High MP] x [Without vs with Smartamine®]
100 vs 120% requirements x 1.9 vs 2.4 %Met (Lys/Met ~ 4 vs 3)

The 2 experimental factors (MP and Met) significantly increased ADG (+16 and 9%, respectively) (Bahloul et al., 2018) and thus were supposed to impact the protein metabolism

Measurement of isotopic (¹⁵N) turnover
✓ After tissue enrichment in ¹⁵N, the rate of release of ¹⁵N from the whole body reflects WB protein degradation
✓ ≠ reference methods which target protein synthesis using tracers
ISOTOPIC 15N TURNOVER RATE

Measurement in urine following an isotopic diet switch

The rate at which WB proteins release 15N after accumulation reflects WB protein degradation rate. Protein synthesis rate evaluated by difference from ADG and protein degradation rate.
MODELING of ISOTOPIC TURNOVER RATE

\[\delta^{15}N(t) = \delta^{15}N_{\infty} + (\delta^{15}N_0 - \delta^{15}N_{\infty}) \times [p \times \exp^{-k1 \times t} + (1-p) \times \exp^{-k2 \times t}] \]

Slope k1 = degradation rate of pool 1 (fast)
Slope k2 = degradation rate of pool 2 (slow)

- All individual data are used to adjust a non linear mixed-effect model (nlme in R)
- Mono or bi-exponential
- Fixed effects: MP level, Methionine content and their interaction
- Random effect: Animal
RESULTS

IMPROVED CATTLE GROWTH BY METHIONINE-BALANCED DIETS DOES NOT RESULT FROM LOWER PROTEIN DEGRADATION
Effect of DIETARY PROTEIN LEVEL

![Graph showing the effect of dietary protein level on urine δ15N% over time after a dietary isotopic switch.]

- Normal MP
- High MP

Time after dietary isotopic switch, d

Urine δ15N%, %
Effect of DIETARY PROTEIN LEVEL
High MP increases the whole body protein degradation rate

Degradation rate, %/d

<table>
<thead>
<tr>
<th></th>
<th>Pool 1 - Fast</th>
<th>Pool 2 - Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH MP</td>
<td>88.0<sup>b</sup></td>
<td>10.2<sup>b</sup></td>
</tr>
<tr>
<td>NORMAL MP</td>
<td>69.5<sup>a</sup></td>
<td>7.99<sup>a</sup></td>
</tr>
</tbody>
</table>

Time after dietary isotopic switch, d
Effect of Dietary Protein Level

High MP increases the whole body protein degradation rate

<table>
<thead>
<tr>
<th>Pool 1 - Fast</th>
<th>Pool 2 - Slow</th>
<th>ADG, kg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH MP</td>
<td>88.0<sup>b</sup></td>
<td>10.2<sup>b</sup></td>
</tr>
<tr>
<td>NORMAL MP</td>
<td>69.5<sup>a</sup></td>
<td>7.99<sup>a</sup></td>
</tr>
</tbody>
</table>

Degradation rate, %/d

Time after dietary isotopic switch, d
Effect of DIETARY PROTEIN LEVEL
High MP increases the whole body protein degradation rate

<table>
<thead>
<tr>
<th></th>
<th>Degradation rate, %/d</th>
<th>ADG, kg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pool 1 - Fast</td>
<td>Pool 2 - Slow</td>
</tr>
<tr>
<td>HIGH MP</td>
<td>88.0<sup>b</sup></td>
<td>10.2<sup>b</sup></td>
</tr>
<tr>
<td>NORMAL MP</td>
<td>69.5<sup>a</sup></td>
<td>7.99<sup>a</sup></td>
</tr>
</tbody>
</table>

HIGH PROTEIN DIETS INCREASE BOTH PROTEIN DEGRADATION AND ANIMAL GROWTH, ⇒ THEY LIKELY INCREASE THE PROTEIN SYNTHESIS TO A GREATER EXTENT
Effect of DIETARY METHIONINE LEVEL

Unbalanced

Balanced

Time after dietary isotopic switch, d

Urinary δ¹⁵N, ‰
Effect of DIETARY METHIONINE LEVEL
No impact on whole body protein degradation

<table>
<thead>
<tr>
<th></th>
<th>Pool 1 - Fast</th>
<th>Pool 2 - Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET BALANCED</td>
<td>81.1<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
</tr>
<tr>
<td>CONTROL</td>
<td>78.7<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
</tr>
</tbody>
</table>

Degradation rate, %/d
Effect of DIETARY METHIONINE LEVEL
No impact on whole body protein degradation

Degradation rate, %/d

<table>
<thead>
<tr>
<th></th>
<th>Pool 1 - Fast</th>
<th>Pool 2 - Slow</th>
<th>ADG, kg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET BALANCED</td>
<td>81.1<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
<td>1.61<sup>b</sup></td>
</tr>
<tr>
<td>CONTROL</td>
<td>78.7<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
<td>1.47<sup>a</sup></td>
</tr>
</tbody>
</table>

Urinary δ^{15}N, ‰

Time after dietary isotopic switch, d
Effect of DIETARY METHIONINE LEVEL

No impact on whole body protein degradation

<table>
<thead>
<tr>
<th></th>
<th>Pool 1 - Fast</th>
<th>Pool 2 - Slow</th>
<th>ADG, kg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET BALANCED</td>
<td>81.1<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
<td>1.61<sup>b</sup></td>
</tr>
<tr>
<td>CONTROL</td>
<td>78.7<sup>NS</sup></td>
<td>9.1<sup>NS</sup></td>
<td>1.47<sup>a</sup></td>
</tr>
</tbody>
</table>

⇒ MET BALANCED DIETS IMPROVE ANIMAL GROWTH POSSIBLY BY INCREASING THE PROTEIN SYNTHESIS RATE
CONCLUSIONS

The improvement of animal growth with methionine balanced diets is not due to a decrease in whole-body protein degradation rate but more likely to an increase in protein synthesis.

As expected, increasing the protein content of diets increased the whole-body protein degradation rate, and may also have increased the protein synthesis rate.