Group recordings accounted for drop out animals

B. Nielsen¹, T. Ostersen¹, H. Gao², G. Su², J. Jensen²,
P. Madsen², O.F.Christensen², M. Shirali²

¹SEGES, Pig Research Centre, DK-1609 Copenhagen, Denmark

²Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark

August 29, 2018
Introduction

Breeding for reduced feed intake is important to
1. reduce cost
2. reduce CO2 emission

Individual feed records are costly

How can we get more phenotypes?
- Solution: Group records of feed intake
- Problem: How to handle drop out animals
Introduction

Breeding for reduced feed intake is important to:
1. reduce cost
2. reduce CO2 emission

Individual feed records are costly

How can we get more phenotypes?

Solution: Group records of feed intake

Problem: How to handle drop out animals
Feed intake of groups

E.g from 0kg feed to 1200kg feed and individual body weights

Literature

Su et al. (2018) *Genet Sel Evol* 50:42
Shirali, et al. Session 42 (17:45)
Group feed intake and individual body weight gain
Group feed regressed on individual weight

\[y_{jk} = \sum_{i=1}^{n_{jk}} x_{ijk}^T \alpha + \sum_{m=1}^{d} \beta_m \sum_{i=1}^{n_{jk}} w_{ijk}^m + \sum_{m=0}^{q} \gamma_{jm} \sum_{i=1}^{n_{jk}} w_{ijk}^m \]

\[+ \sum_{i=1}^{n_{jk}} \left(\sum_{m=0}^{s} a_{ijm} w_{ijk}^m + \sum_{m=0}^{r} p_{ijm} w_{ijk}^m \right) + e_{jk} \]

\[
\begin{pmatrix}
\gamma_{j0} \\
\vdots \\
\gamma_{jq}
\end{pmatrix}
\sim N(0, \Gamma \otimes D),
\]

\[
\begin{pmatrix}
a_{ij0} \\
\vdots \\
a_{ijr}
\end{pmatrix}
\sim N(0, G \otimes A),
\]

\[
\begin{pmatrix}
p_{ij0} \\
\vdots \\
p_{ijr}
\end{pmatrix}
\sim N(0, P \otimes I),
\]

\[e_{jk} \sim N(0, n_{jk} \sigma_e^2) \]
Feed conversion in sub-period

Growth interval from w_1 to w_2:

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta w'_{s12} G \Delta w_{s12} \text{ where } \Delta w_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_s^2 - w_s^1 \end{pmatrix}$$

Breeding values for $f.c._{ij}$

$$BV_{ij} = \frac{a_{ij} \Delta w_{s12}}{w_2 - w_1}$$
Feed conversion in sub-period

Growth interval from w_1 to w_2:

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta w'_{s12} G \Delta w_{s12} \text{ where } \Delta w_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_2^s - w_1^s \end{pmatrix}$$

Breeding values for $f.c._{ij}$

$$BV_{ij} = \frac{a_{ij} \Delta w_{s12}}{w_2 - w_1}$$
Feed conversion in sub-period

Growth interval from w_1 to w_2:

$$f.c._{ij}(\Delta w_{12}) = \frac{y_{ij2} - y_{ij1}}{w_2 - w_1}$$

Genetic variances

$$\Delta w'_{s12} \mathbf{G} \Delta w_{s12} \quad \text{where} \quad \Delta w_{s12} = \begin{pmatrix} w_2^0 - w_1^0 \\ \vdots \\ w_s^2 - w_s^1 \end{pmatrix}$$

Breeding values for $f.c._{ij}$

$$BV_{ij} = \frac{a_{ij} \Delta w_{s12}}{w_2 - w_1}$$
Data

<table>
<thead>
<tr>
<th>Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals</td>
<td>12567</td>
</tr>
<tr>
<td>Groups</td>
<td>1018</td>
</tr>
<tr>
<td>Group size</td>
<td>[7;14]</td>
</tr>
<tr>
<td>Records</td>
<td>3704</td>
</tr>
<tr>
<td>Drop out animals</td>
<td>356</td>
</tr>
</tbody>
</table>
Variance estimates of different models

<table>
<thead>
<tr>
<th>obs</th>
<th>animals</th>
<th>a11</th>
<th>a12</th>
<th>a22</th>
<th>p11</th>
<th>p12</th>
<th>p22</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>*3704</td>
<td>12567</td>
<td>237</td>
<td>1.25</td>
<td>0.050</td>
<td>699</td>
<td>1.73</td>
<td>0.034</td>
<td>88.1</td>
</tr>
<tr>
<td>46732</td>
<td>12599</td>
<td>20</td>
<td>0.11</td>
<td>0.003</td>
<td>66</td>
<td>0.74</td>
<td>0.011</td>
<td>14.5</td>
</tr>
</tbody>
</table>

* The group record is the sum for the group, and therefore the scale is different

Small groups (<7 animals) were removed

REML estimates by DMU (P. Madsen, 2013)
Residual plot, within groups
Breeding values of group and individual RR models

Corr=0.29
Discussion

- $\text{Corr} = 0.29$
- Relation between animals within groups
 - Mean littermates per litter: 1.13
 - More littermates in the same pen led to a higher accuracy of BV (Su et al., 2018)
- More data and higher order might increases accuracy of BV
- Genomic relationship might increase accuracy of BV
Conclusion

- RR-model on longitudinal group records can be used to predict individual BV’s of feed conversion ratio
- RR-model can account for drop out animals
Conclusion

- RR-model on longitudinal group records can be used to predict individual BV’s of feed conversion ratio
- RR-model can account for drop out animals
Conclusion

- RR-model on longitudinal group records can be used to predict individual BV’s of feed conversion ratio
- RR-model can account for drop out animals

Thank You!