

GENETIC GAIN FOR PRODUCTION AND MATERNAL TRAITS IN A TWO-STAGE OPTIMUM CONTRIBUTION SELECTION SCHEME

Birgitte Ask, Hanne Marie Nielsen & Mark Henryon

Dubrovnik, 30/8-2018

HYPOTHESIS

- A two-stage selection scheme with optimum contribution selection (OCS) at both stages realizes more genetic gain for both production and maternal traits when compared to a scheme with truncation selection in the initial and OCS in the final selection stage
- 2. OCS at pre-selection may be more important for lowly heritable traits that are more dependent on family information

PROBLEM

- Preselection by truncation may favour production above maternal traits in the selection index
- Genetic gain in the breeding goal may be less than optimal for a non-integrated market
- Maternal traits are typically measured late in life, have low heritabilities, and are negatively correlated to production traits

 \rightarrow breeding value accuracies are higher for production traits at early selection steps

SIMULATION STUDY

- *full-OCS*: reference selection scheme *without* pre-selection.
 - Sires are selected by OCS
 - Dams are truncation selected
- Alternative selection schemes with pre-selection of sires:
 - *preTrunc*: pre-selection by truncation
 - preOCS: pre-selection by OCS

SIMULATION STUDY

• Two traits:

a production trait: $h_{prod}^2 = 0.20$ a maternal trait: $h_{mat}^2 = 0.20$ or 0.05 $r_g = 0.00 \ (0.50, or - 0.50)$ $v_{prod} = v_{mat} = 1$

• Results:

long-term Δ G: ~23 to ~25th generation Average of 50 repetitions Δ F kept at ~1% in all scenarios

HIGHER AGGREGATE \triangle G WITH OCS THAN TRUNCATION FOR LOW PRE-SELECTED PROPORTION

HERITABILITY OF MATERNAL TRAIT ONLY A VERY SMALL RELATIVE SCALE EFFECT

Relative aggregate genetic gain using OCS compared to truncation for pre-selection

HIGHER \triangle G IN PRODUCTION TRAIT WITH OCS THAN TRUNCATION FOR LOW PRE-SELECTED PROPORTION

Any effect of $h^2(mat)$?

NO EFFECT OF HERITABILITY OF MATERNAL TRAIT

Relative genetic gain in production trait using OCS compared to truncation for pre-selection

NO DIFFERENCE IN \triangle G IN MATERNAL TRAIT BETWEEN USING TRUNCATION OR OCS FOR PRE-SELECTION

OCS IN PRE-SELECTION CHANGES COMPOSITION OF AGGREGATE GENETIC GAIN:

- A higher degree of genetic gain in the production traits
- No loss in the maternal traits \rightarrow no trade-off!
- No effect of the heritability of the maternal trait on this result!

WHY IS PRE-SELECTION BY OCS AN ADVANTAGE FOR THE PRODUCTION BUT NOT THE MATERNAL TRAIT?

- Within versus between family selection?
 - OCS favours within family selection to reduce ΔF ?
 - Timing of phenotypic information / accuracy of traits at time of selection
- Overlapping generations \rightarrow more effect on $\Delta G(mat)$?
- Low-accuracy production type traits, e.g. pooled records or social genetic traits → more effect on ∆G?

CONCLUSION

- Two-stage selection scheme with optimum contribution selection (OCS) at both stages DOES realize more genetic gain for production traits, but NOT for maternal traits
- No effect of heritability on the effect of pre-selection by OCS on maternal trait genetic gain
- → At the same inbreeding rate, preselection by OCS favours high accuracy traits, but without losses in low-accuracy traits

