Development of and Imputation with a SNP map derived from the latest reference genome sequence

Xijiang Yu

Department of Animal and Aquacultural Sciences
Norwegian University of Life Sciences

IHA NMBU, Ås, Norway
August, 2018
Outlines

1. Background

2. A linkage map from latest sheep reference genome

3. Results and conclusions
High and low density chips are often used together for economic reasons
- Missing genotypes can be imputed.

NSG are now trying to adopt genomic selection strategy

4,204 Norwegian white sheep were genotyped during the past year
- 826 genotyped with 600k (HD) chips
- 3,378 genotyped with 8k (LD) chips
The imputation concordance rate is only $\sim 71\%$

- Using the genotypes and linkage maps from our genotyping company.
- Randomly mask < 100 ID in the HD results

The problem may be because of:

- Too few LD loci ($7,327 : 606,006 \approx 1 : 82.7$)
 - Previous work: $8k \Rightarrow 15k \Rightarrow 600k$, still of $< 90\%$
- The linkage maps may need to be upgraded.
Why the linkage maps can be an issue?

- Different chips may be based on different versions of the reference
 - Some shared SNP are of different chromosome locations on LD and HD maps
- Sheep SNP names may be from different name systems
- Quite a few SNP duplicates
Outlines

1. Background

2. A linkage map from latest sheep reference genome

3. Results and conclusions
My algorithm to construct such a map

- Index the reference
 - E.g., ATGCATGC \(\Rightarrow\) ATGC:1,5; CATG:4; GCAT:3 TGCA:2
 - Note the indices are sorted for faster later searches.
 - Index on every 50bp sequences

- Hash all the 50bp segments into integers to save memory

- Look up the initial 50bp hash of a SNP sequence from the index
 - If found, match the rest of the sequence to confirm.
 - Each SNP sequence was searched in 8 ways.
Other concerns

I feel thin... sort of stretched, like butter scraped over too much bread.

Bilbo Baggins / J.R.R. Tolkien
Include as many shared LD loci as possible

- Using SNP flanking sequences instead of their probes
- Many sequences were matched many where in the reference
 - Recover them if possible
- After data cleaning, $LD_{\text{shared}} : HD \approx 1 : 114.5$
Outlines

1. Background

2. A linkage map from latest sheep reference genome

3. Results and conclusions
Accuracy with recycled SNP

- Only recycle SNP on chromosome 1, 3, 13, 14, 16, 17, 21, 24.
Final test imputation results vs the precious

[Graph showing allele error rate across chromosomes]

Legend:
- Inc recycled
- Unique
- Least
Conclusions

- Major
 - Concordance rate increased from 71% to 95%+ with the new map
 - A fast algorithm can finish the map within a few hours.
- Minor
 - Beagle 5 gives better results than beagle 3.3.2
 - Removing imputation results on free chromosome ends can further improve accuracy.