Turkey gait score measured with sensors

B Visser, J Mohr, W Ouweltjes, E Mullaart, PK Mathur, RC Borg, EM van Grevenhof, Aniek Bouwman
Acknowledgement
Importance locomotion

- Good locomotion is important for
 - Performance
 - Longevity
 - Welfare

- Improve locomotion
 - Through breeding & herd management
 - Using sensor technology
Hypotheses

Sensor data can be used to estimate locomotion phenotypes with high accuracy

Sensors can provide low cost, high quality and scalable locomotion phenotypes
Questions

- Which sensors?
- Accuracies?
- Costs?
- Practical feasibility?
Pilot in turkey

- Good routine gait scoring in place
- Selection candidates
- Scored one-by-one
Turkey gait scoring

- Human observer
- Labour intensive
- Subjective
- Once in a life-time / temporal
Turkey gait scoring

- Human observer
- Labour intensive
- Subjective
- Once in a life-time / temporal
 - Repeatable
 - Heritable
 - Golden standard
 - Selection

#wur_abg, @bouwman_aniek, @breed4food
Pilot study

- 2 days
- 100 birds/day
- During routine locomotion scoring
- 3 different types of sensors at same time
- Different sensor placement on each day
- Human score as golden standard
IMU

- 3 Inertial Measurement Units per bird
- One on neck, one on each leg
- 9 variables per IMU
 - Acceleration X, Y, Z
 - Angle X, Y, Z
 - Magnetic X, Y, Z

Size: 47 mm × 30 mm × 13 mm
Weight: 16 gram

#wur_abg, @bouwman_aniek, @breed4food
IMU

- Attachment with velcro band
- IMU on legs influence walking
- Place IMU in same direction on animal
- Potential to predict other traits
- Potential to be incorporated in ID tag

- Costs: receiver ~€1000, IMU ~€400 (20 IMUs/receiver)
IMU

#wur_abg, @bouwman_aniek, @breed4food
Force plate

- In floor covered with bedding
- 4 load cells
- 8 variables
 - 1) Force X cell 1+2
 - 2) Force X cell 3+4
 - 3) Force Y cell 1+4
 - 4) Force Y cell 2+3
 - 5-8) Force Z cell 1-4

Weight: ~40kg
Size: 60cm x 40cm x 10cm
Force plate

- Placement in floor
- Robust for poultry
- Recalibrate/correct for drift
- Walk over it correctly
- Potential to predict body weight

- Costs: ~€25,000-40,000
Force plate
Force plate

F_z tot

Force application point $t = 4.17$ sec

#wur_abg, @bouwman_aniek, @breed4food
3D camera

- From behind, from top
- 3 images
 - Infrared
 - Depth
 - colour
3D camera

- Camera placement
- File storage: 1-1.5GB for 40s/bird
- Image = what we see
- Automation needed
- Potential to predict other traits

- Costs: ~€150/camera
3D camera
Locomotion prediction

- gait score = “gold standard”
- Sensor signals as predictor variables
Locomotion prediction

- Raw or derived features?
- Which derived features are informative?
 - Scoring protocol
 - Any sensor that can capture them suited
- Combination of sensors?
Gait score

- Motion
 - Pitch
 - Balance
- Leg angulation
- Hock strength
- Hip strength
- Leg structure

Motion

Morphology
After pilot

- Optimize sensor settings/placement
- Larger experiment
- Try in group housing
Take home message

- Get experience!
 - Start applying sensors
 - Small trails first
 - “golden standard”
 - Most sensors produce “just” variables