A new PLF sensor aiming for reducing broilers’ body temperature fluctuations

Druyan, S., Barchilon, N., Halachmi I.

Institute of Animal Science,
Institute of Agricultural Engineering (IAE)
Volcani Center, ARO
HaMaccabim Road, Rishon Le Tsiyon, Israel
Background

In birds, body temp. (Tb) is the most physiologically-protected parameter. The thermoregulatory system operates at a very high gain, in order to maintain Tb within a narrow range of alteration.

\[S = M - E \pm R \pm C \pm K \]

[Diagram showing thermoregulatory zones and stress responses.]

- **Cold thermogenesis** (ST, NST)
- **Resting Metabolic Rate**
- **Upper critical Temperature**
- **Upper critical Temperature**
- **Evaporative Water Loss**
- **Hot thermogenesis**
- **Painting**
- **Sensible Heat Loss** (SHL)
- **Thermoneutral zone (TNZ)**
- **Evaporation** (ml H2O/g BW)
- **Sensible Heat Loss** (watts)

Effective ambient Temperature

Cold Stress

Heat Stress
Thermo-Neutral Zone: \(M = E \pm R \pm C \pm K \)

In TNZ, the body is in thermal equilibrium with the environment and produce energy at the resting metabolic rate (RMR)
The lower and upper critical temperatures of broilers from hatch to 56 days, and their body weights (1980’s broilers)
Genetic improvement in growth of broilers since 1950's

Growth curves of two strains kept without selection from 1957 and from 1977, and of Ross 308 broilers (in 2005), show weekly means of body weight (BW)

The weekly average daily BW gain (grams per day) are also shown on the graph

Zuidhof et al. 2014
Modern broilers have higher rate of feed consumption and metabolism, and consequently higher heat production.

It seems that the upper and lower critical temperature limits may vary left from the ones suggested according to the genetics, age, diet, and metabolic rate of today broilers.
Growth rate of 2016 male broilers raised under standard conditions

Days to 2000g
2016 broilers = 29 d

25 g/d

55 g/d

90 g/d

101 g/d

Druyan et al. 2016; upd
Growing Trial:

- Acoustic heat: 24°C + 32°C 5h
- Standard constant: 24°C
- Cycling heat: 24°C 12h/d, 32°C 12h/d

Druyan et al. 2016; upd
Growth rate of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d

Days to 2000g

- 2016 broilers = 29 d
- 2016 broiler under hot summer condition (32 / 22°C) = 35 d

Body Weight (g) vs. Age (days)

- 24°: 25 g/d, 55 g/d, 86 g/d, 90 g/d, 101 g/d
- $24 + 33^\circ$: 88 g/d, 95 g/d
- $24/32^\circ$: 66 g/d, 70 g/d

Druyan et.al. 2016; upd
5th-week data of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d

<table>
<thead>
<tr>
<th>Condition</th>
<th>BW 28d (Kg)</th>
<th>BW 35d (Kg)</th>
<th>Feed consumption 5wk (kg)</th>
<th>FCR 5wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C</td>
<td>101 g/d</td>
<td>95 g/d</td>
<td>70 g/d</td>
<td></td>
</tr>
<tr>
<td>24 + 33°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/32°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Druyan et.al. 2016; upd
Plasma triiodothyronine (T3) concentrations of chicks kept under differing environmental temperature (before and 5h after from the beginning of heating).

Druyan et al. 2016; upd
Plasma thyroxin (T4) concentrations of chicks kept under differing environmental temperature (before and 5h after from the beginning of heating).

Druyan et.al. 2016; upd
It seems that contemporary commercial broilers have difficulties in maintaining dynamic steady-state processes under extreme changes in environmental conditions.
High ambient temperatures can have a major impact on performance and welfare of commercial poultry.

When they are coupled with high humidity, the combination can become critical.

Therefore, there is a need to re-evaluate the management of poultry and equipment used, so that heat stress is minimized and animal welfare will improved.
Improving Management
Physiology background

Improving Management

Broiler centric approach
Growing Trial:

Cycling heat
24°C 12h/d, 32°C 12h/d

Standard constant 24 °C

Acoustic heat 24 + 32°C 5h

Druyan et.al. 2016; upd
3rd-week body temperature of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d

Druyan et.al. 2016; upd
Facial temperature

![Thermographic image](image_url)

<table>
<thead>
<tr>
<th>Label</th>
<th>Min</th>
<th>Max</th>
<th>Max - Min</th>
<th>Avg</th>
<th>Stdev</th>
<th>Result</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td>-60.0</td>
<td>42.4</td>
<td>*102.4</td>
<td>41.7</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR01*</td>
<td>41.2</td>
<td>42.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR02</td>
<td>28.7</td>
<td>41.6</td>
<td>12.8</td>
<td>36.9</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3rd-week Facial temperature of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d
3rd-week Facial temperature of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°c 12h/d, 32°c 12h/d
3rd-week Facial to body temperature correlation of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d

$y = 1.03x - 2.74$

$R^2 = 0.81$
5th-week Facial to body temperature correlation of 2016 male broilers raised under either standard conditions, short-term rapid elevation in ambient temperature, or Cycling heat 24°C 12h/d, 32°C 12h/d

\[y = 1.00x - 1.18 \]

\[R^2 = 0.92 \]
Will it work under Commercial management condition?
Next stage no handling

Temperature logger (SL53T-A ±0.1°C, Signatrol). The temperature loggers were rapped with PlastyDip product that sealed the logger against water and humidity.
Chicks were implanted with RFID tag as well as Barcode identification number.
Two thermal cameras were placed perpendicular to the entry hole axis. This way, most of the time, the chicken’s head was in the right orientation and distance while capturing thermal images.

Druyan et.al. 2017; upd
Thermal image in the right orientation:

The camera units were programmed to capture images in 2Hz for 20 second each time a bird enters its head through the entrance hole. The data was saved for post processing.

Druyan et.al. 2017; upd
The sync between the RFID and the cameras unit was visually examined to verify the data is valid.
Visits distribution of chickens in the system during the whole experiment
Correlation between the prediction to the logger temperature

<table>
<thead>
<tr>
<th>Camera</th>
<th>Correlation $[R^2]$</th>
<th>Average Error [C]</th>
<th>STD of Average Error[C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera I</td>
<td>0.87</td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>Camera II</td>
<td>0.86</td>
<td>0.22</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Druyan et.al. 2017; upd
Conclusions:

Broiler body temperature is the most important parameter that can influence broiler performance, metabolic rate, FCR and energy expenditure.

In order to achieve the best results one must keep the broilers within their TNZ.

Monitoring broilers body temperature during the growing period will able us to fit the environmental condition for the broiler’s physiological demands.

By developing this new sensor, broiler's body temperature can become one of the crucial parameters that control the broiler house management system.
Acknowledgements

shelly.druyan@mail.huji.ac.il
Question?