Population structure and genetic diversity of Drežnica goat from Slovenia – preliminary results

M. Simčič, I. Medugorac, D. Bojkovski, S. Horvat

Dubrovnik, Croatia, 27th - 31st August 2018
Introduction

• The only autochthonous goat breed in Slovenia
• Widespread in western Alps - adapted on mountain grazing
• A small area with a radius of less than 30 km
Drežnica goat in Slovenia

• At high risk of extinction – critically endangered
 • Population size = 629 animals
 • Small area

• Breeding program since 2005

• Two types (subpopulations?)
 • Dairy type – cheese production
 • Meat type – weaned kids production

• Milk production
 • 350 kg of milk in 200 days of lactation
 • 4.3% fat, 3.4% proteins
Large variability of coat colours

Photo: V. Rezar
Objectives

• to obtain:
 • unbiased estimates of the genetic diversity parameters
 • population structure
 • inbreeding level
 • possible admixture
• in the autochthonous Drežnica goat in Slovenia
Material

• **Blood samples**
 • Drežnica goat (n = 96)
 • 4 - 5 animals from each of 20 flocks (unrelated)

• 13 reference breeds – genotypes (n = 577)
 • **DRAYAD database**
 • Goat breeds from Switzerland (Burren et al., 2016)
 • Angora breeds (Visser et al., 2016)
Drežnica goat (n = 96)

- **Origin** – 20 flocks

- **Type (subpopulations?)**
 - Meat (n = 66)
 - Dairy (n = 30)

- **Gender**
 - ♂ (n = 17)
 - ♀ (n = 79)

- **Coat colour**
 - Black, black-brown (n = 48)
 - Spotted (n = 24)
 - Yellow, orange (n = 16)
 - Grey (n = 4)

- **Relationship coefficient**
 - < 0,25
 - CPZ database - pedigree
14 breeds (13 reference breeds)

<table>
<thead>
<tr>
<th>N (breeds)</th>
<th>Abbreviation</th>
<th>Breed name</th>
<th>N (animals)</th>
<th>County of origin</th>
<th>Reason to include</th>
<th>Origin of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>DRZ</td>
<td>Drežnica goat</td>
<td>96</td>
<td>Slovenia</td>
<td>Studied breed</td>
<td>DNA</td>
</tr>
<tr>
<td>02</td>
<td>APP</td>
<td>Appenzell</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>GST</td>
<td>Grisons striped</td>
<td>26</td>
<td>Switzerland</td>
<td>Geographically close</td>
<td>DRYAD, Burren et al., 2016</td>
</tr>
<tr>
<td>04</td>
<td>TGR</td>
<td>Tessin grey</td>
<td>27</td>
<td></td>
<td>Introgression</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>CHA</td>
<td>Chamois coloured</td>
<td>61</td>
<td></td>
<td>Similar type traits</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>VAG</td>
<td>Valais</td>
<td>24</td>
<td></td>
<td></td>
<td>DRYAD, Visser et al., 2016</td>
</tr>
<tr>
<td>07</td>
<td>NVE</td>
<td>Nera Verzasca</td>
<td>29</td>
<td>Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>PEA</td>
<td>Peacock</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>SAA</td>
<td>Saanen goat</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SGB</td>
<td>Booted</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TOG</td>
<td>Togenburg goat</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AR</td>
<td>Angora</td>
<td>30</td>
<td>Argentina</td>
<td>Outgroups</td>
<td>DRYAD, Visser et al., 2016</td>
</tr>
<tr>
<td>13</td>
<td>FR</td>
<td>Angora</td>
<td>26</td>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SA</td>
<td>Angora</td>
<td>48</td>
<td>South Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Together</td>
<td></td>
<td></td>
<td>673</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methods

• Genotypisation - Illumina Caprine SNP50 array
 • standard procedures (http://www.illumina.com)
 • Van Haeringen laboratory
• Quality control procedures excluded SNPs with:
 • genotyping errors
 • unknown chromosomal position
 • call rate < 95%
 • minor allele frequency < 0.025
 • the departure from Hardy-Weinberg equilibrium
• Missing genotypes imputed - Beagle
Methods

• Genome divided into blocks of 4 SNPs (5,530 block alleles)
• Genome-wide relationships - method of Powell et al. (2010)
• Genetic diversity parameters (H_O, H_E, ...)
• Genetic relationships between breeds
 • Nei genetic distances
• Neighbour network
 • constructed and plotted - SplitsTree4
• Unsupervised clustering
 • Admixture
 • the best K - the lowest cross-validation error
Results

• Drežnica goat:

 • IBD = 0.1676 ± 0.0963
 • F = 0.1144 ± 0.0800
 • Max F = 0.5365
Genetic distances - Neighbour-Net

Independent origin of the breed!
Population structure
– Unsupervised clustering

Admixture (667 animals, $K = 14$)

The Drežnica goat is not divided into two subpopulations
Conclusion

- Phylogenetic analyses demonstrated unique genetic identity of Drežnica goat preserved in the Alps.

- Genetic distance matrix and unsupervised clustering showed independent origin of the breed.

- The population is not genetically divided into two types.

- The most purebred animals represent an important genetic nucleus for the conservation.
Thank you for your attention!